首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
We have fabricated planar bottom-contact organic thin-film transistors as a function of the thickness of the pentacene active layer. The highest mobility of the planar bottom-contact transistors is 0.47 cm2/Vs with only a 7 nm pentacene active layer. Our planar bottom-contact transistors show much higher mobility than conventional bottom-contact counterparts and even higher than the reported mobility values of top-contact counterparts for each thickness in the range from 2.5 to 10 nm. We find that spike at the edges of source and drain electrodes seriously deteriorates device performance.  相似文献   

2.
Vapor condensation was performed to prepare nanostructures of copper phthalocyanine. With a lower pressure and longer evaporation duration, a fine and dense network of thin and uniform nanowires was obtained. Nanorods with tube-like branches were formed at higher working pressures. The absorption coefficients and optical band gaps of the nanostructures were derived from the UV-vis absorption spectra. After heat treatment, the amorphous nanowires were transformed into crystalline straight β-phase nanostructures with a smooth surface. Reduced intensity of the absorption spectrum and a red shift of the optical band gap were also observed.  相似文献   

3.
Organic electronic devices using a pentacene have improved importantly in the last several years. We fabricated pentacene organic thin-film transistors (OTFTs) with dielectric SiO2 and ferroelectric Pb(Zr0.3,Ti0.7)O3 (PZT) gate insulators. The organic devices using SiO2 and PZT films had the field-effect mobility of approximately 0.1 and 0.004 cm2/V s, respectively. The drain current in the transfer curve of pentacene/PZT transistors showed a hysteresis behavior originated in a ferroelectric polarization switching. In order to investigate the polarization effect of PZT gate dielectrics in a logic circuit, the simple voltage inverter using SiO2 and PZT films was fabricated and measured by an output-input measurement. The gain of inverter at the poling-down state was approximately 7.2 and it was three times larger than the value measured at the poling-up state.  相似文献   

4.
The characteristics of vertical-type organic static induction transistors (OSITs) were compared with those of lateral-type organic field effect transistors (OFETs). From these experiments, it was confirmed that the OSITs can operate at a voltage one order less than that required for OFETs. We also fabricated two types of organic inverter based on OSITs and OFETs and investigated their transfer characteristics. These results demonstrate that it is possible to decrease the operational voltage of organic inverters from ± 20 V to ± 2 V by using two OSITs with higher on/off ratios.  相似文献   

5.
We report on the fabrication of organic thin-film transistors (OTFTs) with a spun cross linked poly-4-vinylphenol (PVP) dielectric on a polyethersulphone (PES) flexible substrate. To improve the electrical performance of OTFTs, we employed a random single-walled carbon nanotubes (SWNTs) network as a carrier transfer underlay without sacrificing the flexibility of the TFTs. The random SWNTs showed that they can act as a semiconducting channel and conduction path to shorten the channel length in our TFTs. The flexible thin-film transistors (TFTs) with a random SWNTs/pentacene bilayer as an active channel exhibited an improved saturation field effect mobility (µsat) of 2.6 × 10− 1 cm2/Vs compared to that of TFTs without the SWNTs underlay, while creating only a minor reduction of the current on/off ratio.  相似文献   

6.
7.
N-channel operation of thin-film transistors based on 1,4,5,8-naphthalene tetracarboxylic dianhydride (NTCDA) with a 9-nm-thick poly(methyl methacrylate) (PMMA) gate buffer layer was examined. The uniform coverage of the ultrathin PMMA layer on an SiO2 gate insulator, verified by X-ray reflectivity measurement, caused the increase of electron field-effect mobility because of the suppression of electron traps existing on the SiO2 surface. In addition, air stability for n-channel operation of the NTCDA transistor was also improved by the PMMA layer which possibly prevented the adsorption of ambient water molecules onto the SiO2 surface.  相似文献   

8.
We demonstrate the fabrication of semi-transparent pentacene-based thin-film transistors (TFTs) with thin poly-4-vinylphenol (PVP)/high-k yttrium oxide (YOx) double gate dielectric layers and also with thermally-evaporated NiOx source/drain (S/D) electrodes which show a transmittance of ∼ 30-40% and sheet resistance range of 100-200 Ω/□ (controlled by deposition rate). Our pentacene TFTs with PVP (45 nm)/YOx (100 nm) layers operated at less than − 5 V, exhibiting a decent saturation mobility (maximum 0.83 cm2/Vs) and on/off current ratios of 104. When the sheet resistance of our semi-transparent NiOx electrode increased from 100 Ω/□ to 200 Ω/□, the field mobility of our TFT decreased but was found to be still effective as 0.32 cm2/Vs.  相似文献   

9.
We investigated the effect of the deposition rate of Au source/drain electrodes on the contact resistance of the top-contact organic thin-film transistors (OTFTs). For the formation of source/drain contacts, Au was thermally deposited at the different rates of 0.5, 1.0, 5.0, and 13.0 Å/s. With increasing the Au deposition rate, the contact resistance extracted at the gate voltage of − 30 V could be reduced from 14 × 106 to 2.4 × 106 Ω, resulting in the characteristic improvements of the top-contact OTFT. It is also found that the contact resistance significantly affects the off-state currents of the device having the short channel length of 10 μm. The control of the deposition rate of source/drain electrodes is suggested to optimize the contact properties of the top-contact OTFTs as well as the device performance.  相似文献   

10.
The formation of a poly-Si thin-film transistor (TFT) device with a tunneling field-effect-transistor (TFET) structure has been studied. With scaling the gate length down to 1 μm, the poly-Si TFT device with a conventional metal-oxide-semiconductor-field-effect-transistor structure would be considerably degraded, which exhibits an off-state leakage of about 10 nA/μm at a drain bias of 6 V. The short channel effect would tend to cause the source/drain punch-through and also increase the lateral electric field within the channel region, thus enhancing the carried field emission via trap states. The TFET structure can be employed to alleviate the short channel effect in the poly-Si TFT device. As a result, even for a gate length of 1 μm, the poly-Si TFT device with the TFET structure can exhibit an off-state leakage smaller than 1 pA/μm and an on/off current ratio of about eight orders at a drain bias of 7 V. Furthermore, even for a gate length of only 0.2 μm, the resultant poly-Si TFT device with the TFET structure can exhibit good electrical characteristics with an off-state leakage smaller than 10 pA/µm and an on/off current ratio of about six orders at a drain bias of 3.2 V. As a result, this scheme is promising for implementing a high packing density of poly-Si TFT devices.  相似文献   

11.
Modifications of indium-tin-oxide (ITO) and copper phthalocyanine (CuPc) layers by heat treatment aimed at lowering driving voltage in organic light-emitting diodes (OLEDs) are examined. Significant changes were observed in the surface morphology and carrier injection properties of ITO and CuPc layers after annealing at T = 250 °C for 0-60 min in a glove box. In the case of ITO annealing, although the ITO work function gradually decreased and the surface of the ITO layer became smoother than that of an unannealed ITO layer, we observed an appreciable decrease in the driving voltage with an increase in annealing time. In the case of CuPc annealing, on the other hand, we observed deterioration of the OLED's characteristics. All devices demonstrated an increase in driving voltage due to the pronounced crystallization of the CuPc layer.  相似文献   

12.
We fabricated copper phthalocyanine (CuPc) thin-film field-effect transistors (FETs) on a rubbed flexible polyethersulfone (PES) substrate. Rubbing the PES film induced a unidirectional orientation of CuPc crystallites, which were oriented perpendicular to the rubbing direction. Favorable conditions for fabricating a CuPc FET were determined after fabricating CuPc FETs of two different types and evaluating their output performance. Well-aligned CuPc crystallites along the direction connecting source and drain electrodes can play an important role in improving the output performance of the fabricated FETs.  相似文献   

13.
Schottky diodes have been fabricated using pentacene-doped poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) as a semiconducting material. To understand the fundamental properties of the pentacene-doped PEDOT:PSS, ultraviolet visible (UV) absorption spectroscopy was employed. It was found that a significant amount of pentacene can dissolve in n-methylpyrrolidone solvent. No characteristic absorption peak of pentacene was observed in the UV-visible spectra of PEDOT:PSS films doped with pentacene,. However, the absorption intensity of the doped PEDOT:PSS films increased as the pentacene concentration increased in particular in the UV region. The atomic force microscope images show that the surface roughnesses of PEDOT:PSS films increased as the pentacene concentration increased. Three-layer Schottky diodes comprising Al/PEDOT:PSS/Au or Al/PEDOT:PSS-pentacene/Au were fabricated. The maximum forward currents of non-doped and doped Schottky diodes were 4.8 and 440 µA/cm2 at 3.3 MV/m, respectively. The forward current increased nearly two orders of magnitude for Schottky diode doped with 11.0 wt.% of pentacene.  相似文献   

14.
P- and n-type channel thin film transistors (OTFTs) were fabricated by using hexadecahydrogen copper phthalocyanine (H16CuPc) and hexadecafluoro copper phthalocyanine (F16CuPc) molecules, respectively. Top-contact and bottom-contact source-drain configurations were used for both semiconductors. Furthermore, the temperature and film thickness dependences on the mobility values were measured in the saturation regime of source-drain current. Unipolar mobilities in such single-layer OTFTs were correlated to thin film morphology by X-ray diffraction analysis and atomic force microscopy measurements. Shelf-life time tests of p-type and n-type OTFTs are detailed as OTFT configuration and substrate temperature dependence over a time period of 100 days.  相似文献   

15.
We have investigated the effect of film thickness of copper phthalocyanine (CuPc) on improving fluorinated copper phthalocyanine (F16CuPc) thin film transistor (TFT) performance with an organic pn junction. Electron field-effect mobility is exponentially enhanced up to 2.0 × 10− 2 cm2 V− 1 s− 1 with increasing of CuPc film thickness, and then unchanged when the CuPc thickness is over the saturation thickness (3 monolayers). The charge carrier density at the interface of F16CuPc/CuPc decreases the total TFT resistance, which leads to the increase of mobility. Threshold voltage is suppressed with increasing CuPc films. On the other hand, larger current on/off ratio is obtained when islanded CuPc films are formed on the surface of F16CuPc films. Therefore, employing an organic pn junction is an effective and simple method to fabricate high performance of n-channel transistors for practical applications.  相似文献   

16.
The effects of positive and negative gate-bias stress on organic field-effect transistors (OFET) based on tantalum (Ta)/tantalum pentoxide (Ta2O5)/fluorinated copper phthalocyanine (F16CuPc) structure are investigated as a function of stress time and stress temperature. It is shown that gate-bias stress induces a parallel threshold voltage shift (ΔVT) of OFETs without changes of field-effect mobility μEF and sub-threshold slope (ΔS). The ΔVT is observed to be logarithmically dependent on time at high gate-bias appropriate to OFET operation. More importantly, the shift is directional, namely, be large shift under positive stress and almost do not move under negative stress. The threshold voltage shift is temperature dependent with activation energy of 0.51 eV. We concluded that threshold voltage shift of the OFET with F16CuPc as active layer is due to charge trapping in the insulator in which trapped carriers have redistribution.  相似文献   

17.
Shengwei Shi  Dongge Ma 《Thin solid films》2010,518(17):4874-4878
The effects of buffer layers, including LiF, LiCl, NaF, NaCl, NaI, KI, RbF, RbCl, CsF, CsCl, MgF2, CaF2, BaF2, and BaCl2 on electron injection and device performance in organic light-emitting diodes based on tris-(8-hydroxyquinoline) aluminum, were investigated systematically. The insertion of the buffer layers at the organic/cathode interface not only reduced the operating voltage, but also enhanced the luminance and efficiency, which is attributed to the improvement of electron injection efficiency. It was found that the efficiency of the electron injection was closely related to the inherent properties of the buffer layer, such as its melting point (MP) and dielectric constant (ε), as well as with the buffer layer's interface with the metallic electrode through the effective work function (WF). Low MP, low ε and low WF values result in an effective improvement in the injection of the electrons, and thus to the device performance. The electroluminescent performance was further improved by the introduction of calcium between the buffer layer and the aluminum electrode.  相似文献   

18.
Photovoltaic cells, with a conducting polymer/fullerene (C60) interpenetrating heterojunction structure fabricated by spin-coating a conducting polymer onto a C60 thin film, have been investigated and demonstrated a high efficiency as solar cells based on organic materials. The photovoltaic properties of the solar cells with a structure of indium-tin-oxide (ITO)/C60/poly(3-hexylthiophene) (PAT6)/Au have been improved by the insertion of a molybdenum trioxide (VI) (MoO3) layer as a cathode buffer layer. In the solar cells with the structure of ITO/C60/PAT6/MoO3/Au, the energy conversion efficiency has been improved to 1.15% under AM1.5 (100 mW/cm2) illumination.  相似文献   

19.
In this paper we present photoemission studies of the influence of 12-hour exposure to the ambient air on the chemical and electronic properties of thin 16-nm copper phthalocyanine (CuPc) sensing layers deposited on n- and p-type silicon Si(111) substrates covered with the native oxide. The surface chemistry and electronic parameters of organic thin film including surface band bending, work function, electron affinity and their variations upon the exposure have been monitored with X-ray photoemission spectroscopy and ultraviolet photoemission spectroscopy techniques. We found that after the exposure, the surface chemistry of CuPc remained unaffected, however the work function and surface band bending increased by 0.55 eV and 0.45 eV for the layers on n-Si and by 0.25 eV and 0.30 eV for those on p-Si. Additionally, we detected a slight surface dipole at CuPc on n-Si manifested by a small shift in electron affinity of 0.10 eV. In order to explain these changes we developed a model basing on the interaction of ionic species with the phthalocyanine surface.  相似文献   

20.
The effect of iron(III) p-toluenesulfonate hexahydrate (Fe(PTS)3) concentration on the formation and patternability of poly(3,4ethylenedioxythiophene) (PEDOT) films on (3-aminopropyl)trimethoxysilane (APS) monolayer was investigated. Low deposition rate yielded highly conductive and very smooth PEDOT films. However, the spin-coated oxidants in low Fe(PTS)3 concentrations were susceptible to moistures, leading to the poorly patterned PEDOT films. Increasing Fe(PTS)3 concentration enabled the fine patterning of the films. The fabricated thin film transistors with PEDOT electrodes formed on 30 wt.% Fe(PTS)3 revealed the saturation mobility of 0.16 cm2/V s and subthreshold slope of 0.5 V/decade. The obtained low contact resistance was 12 kΩ cm, possibly due to the negligible interface morphological discontinuity at the pentacene-PEDOT interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号