首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cd1 − xZnxTe films were prepared by radio frequency (r.f.) magnetron sputtering from Cd0.9Zn0.1Te slices target with different sputtering power (60-120 W). The effects of sputtering power on the properties of Cd1 − xZnxTe films were studied using X-ray diffraction (XRD), energy dispersive X-ray (EDX), atomic force microscopy (AFM), ultraviolet spectrophotometer and Hall effect measurements. The composition of the deposited films was determined by EDX. The Cd content was found always to be higher than the Te content, regardless of sputtering power. This behavior may be explained by the preferential sputtering of cadmium atoms in the target. XRD studies suggest that ZnTe secondary phases were coexisted in Cd1 − xZnxTe films. The origin of the secondary phase is ascribed to the lowest sticking coefficient of Zn atom. AFM micrographs show that the grain size increases with the sputtering power. The optical transmission data indicate that shallow absorption edge occurs in the range of 750-850 nm, and the sputtering power does not have a clear effect on the optical absorption coefficient. In Hall Effect measurements, the sheet resistivities of the deposited films are 1.988 × 108, 8.134 × 107, 8.088 × 107 and 3.069 × 107 Ω/sq, respectively, which increase with the increasing of sputtering power.  相似文献   

2.
Inverse spinel zinc stannate (Zn2SnO4, ZTO) films were deposited onto fused quartz glass substrates heated at 800 °C by rf magnetron sputtering using a ceramic ZTO target (Zn:Sn = 2:1). H2 flow ratios [H2/(Ar + H2)] were controlled from 0 to 30% during the depositions. ZTO films deposited at 800 °C possessed a polycrystalline inverse spinel structure. The lowest resistivity of 1.1 × 10− 2 Ω cm was obtained for a ZTO film deposited at 20% H2 flow ratio. The transmittance of the ZTO film was approximately 80% in the visible region.  相似文献   

3.
ZrO2 films were deposited by reactive gas flow sputtering (GFS) where voltage is applied to a cyindrical hollow-cathode target from a DC source, the discharge being produced at relatively high sputtering pressure. In this system, secondary electrons form a major component of the total current flow and lead to heating of the substrate which in turn has an effect on the properties of deposited films. The present experiments were carried out under the following conditions: Ar gas flow rate of 200 sccm, O2 flow rate FO2 in the range between 0.003 and 1 sccm, and sputtering power (PS) in the range of 50-800 W. The reults showed that the crystal structure of the films deposited for PS below 200 W was monoclinic but for PS above 400 W, the films included tetragonal cystals of stable structure formed at high temperature by the electron bombardment. The films were formed with grains of 20-100 nm in diameter in a porous structure. The mechanical properties of the films were determined by a nanoindentation technique. Martens hardness (HM) of the porous films was found to be in the range between 220 and 330 MPa which is substantially less than that of films typically deposited by rf magnetron sputtering.  相似文献   

4.
NixFe100−x films with a thickness of about 200 nm were deposited on SiO2/Si(1 0 0) substrates at room temperature by DC magnetron co-sputtering using both Fe and Ni80Fe20 targets. Compositional, structural, electrical and magnetic properties of the films were investigated. Ni76Fe24, Ni65Fe35, Ni60Fe40, Ni55Fe45, Ni49Fe51 films are obtained by increasing the sputtering power of the Fe target. All the films have a fcc structure. Ni76Fe24, Ni65Fe35, Ni60Fe40 and Ni55Fe45 films grow with crystalline orientations of [1 1 1] and [2 2 0] in the direction of the film growth while the Ni49Fe51 film has the [1 1 1] texture structure in the direction of the film growth. The lattice constant of the film increases linearly with increasing Fe content. All of the films grow with thin columnar grains and have void networks in the grain boundaries. The grain size does not change markedly with the composition of the film. The resistivity of the film increases with increasing Fe content and is one order of magnitude larger than that of the bulk. For all the films the magnetic hysteresis loop shows a hard magnetization. The Ni76Fe24 film has the lowest saturation magnetization of 6.75×10−2 T and the lowest saturation field of 8.36×104 A/m while the Ni49Fe51 film has a largest saturation magnetization of 9.25×10−2 T and the largest saturation field of 1.43×105 A/m.  相似文献   

5.
High quality Tl2Ba2CaCu2O8 (Tl-2212) superconducting thin films are prepared on both sides of 2 in. LaAlO3(0 0 1) substrates by off-axis magnetron sputtering and post-annealing process. XRD measurements show that these films possess pure Tl-2212 phase with C-axis perpendicular to the substrate surface. The thickness unhomogeneity of the whole film on the 2 in. wafer is less than 5%. The superconducting transition temperatures Tcs of the films are around 105 K. At zero applied magnetic field, the critical current densities Jcs of the films on both sides of the wafer were measured to be above 2 × 106 A/cm2 at 77 K. The microwave surface resistance Rs of film was as low as 350 μΩ at 10 GHz and 77 K. In order to test the suitability of Tl-2212 thin films for passive microwave devices, 3-pole bandpass filters have been fabricated from double-sided Tl-2212 films on LaAlO3 substrates.  相似文献   

6.
Sn-doped In2O3 (ITO) films were deposited on heated (200 °C) fused silica glass substrates by reactive DC sputtering with mid-frequency pulsing (50 kHz) and a plasma control unit combined with a feedback system of the optical emission intensity for the atomic O* line at 777 nm. A planar In-Sn alloy target was connected to the switching unit, which was operated in the unipolar pulse mode. The power density on the target was maintained at 4.4 W cm− 2 during deposition. The feedback system precisely controlled the oxidation of the target surface in “the transition region.” The ITO film with lowest resistivity (3.1 × 10− 4 Ω cm) was obtained with a deposition rate of 310 nm min− 1 and transmittance in the visible region of approximately 80%. The deposition rate was about 6 times higher than that of ITO films deposited by conventional sputtering using an oxide target.  相似文献   

7.
Al-doped zinc oxide (AZO) thin films were deposited onto flexible polyethylene terephthalate substrates, using the radio frequency (RF) magnetron sputtering process, with an AZO ceramic target (The Al2O3 content was about 2 wt.%). The effects of the argon sputtering pressure (in the range from 0.66 to 2.0 Pa), thickness of the Al buffer layer (thickness of 2, 5, and 10 nm) and annealing in a vacuum (6.6 × 10− 4 Pa), for 30 min at 120 °C, on the morphology and optoelectronic performances of AZO films were investigated. The resistivity was 9.22 × 10− 3 Ω cm, carrier concentration was 4.64 × 1021 cm− 3, Hall mobility was 2.68 cm2/V s and visible range transmittance was about 80%, at an argon sputtering pressure of 2.0 Pa and an RF power of 100 W. Using an Al buffer decreases the resistivity and optical transmittance of the AZO films. The crystalline and microstructure characteristics of the AZO films are improved by annealing.  相似文献   

8.
SnO2 films doped with Sb (ATO) were deposited both on unheated glass substrates and on glass substrates that had been heated at 200 °C by reactive sputtering of an Sb-Sn alloy target with a plasma control unit (PCU) and mid-frequency (mf, 50 kHz) unipolar pulsing. The PCU feedback system monitors the oxidation states of target surface by detecting the sputtering cathode voltage (impedance control method). The mf pulse wave is approximately square-shaped; this helps to reduce arcing on the target when high power density is applied on the cathode. In case of the ATO depositions on the heated substrate at 200 °C in the “transition region” of reactive sputtering, the deposition rate was 280 nm/min, the lowest resistivity of the ATO films was 4.6 × 10− 3 Ω cm and the optical transmittance was over 80% in the visible region of light.  相似文献   

9.
Cheng-Hsing Hsu 《Thin solid films》2009,517(17):5061-1132
Zirconium tin titanium oxide doped 1 wt.% ZnO thin films on n-type Si substrate were deposited by rf magnetron sputtering at a fixed rf power of 300 W, a substrate temperature of 450 °C, a deposition pressure of 5 mTorr and an Ar/O2 ratio of 100/0 with various annealing temperatures and annealing times. Electrical properties and microstructures of 1 wt.% ZnO-doped (Zr0.8Sn0.2)TiO4 thin films prepared by rf magnetron sputtering on n-type Si(100) substrates at different annealing temperatures (500 °C-700 °C) and annealing times (2 h-6 h) have been investigated. The structural and morphological characteristics analyzed by X-ray diffraction (XRD) and atomic force microscope (AFM) were sensitive to the treatment conditions such as annealing temperature and annealing time. At an annealing temperature of 600 °C and an annealing time of 6 h, the ZnO-doped (Zr0.8Sn0.2)TiO4 thin films possess a dielectric constant of 46 (at f = 10 MHz), a dissipation factor of 0.059 (at f = 10 MHz), and a low leakage current density of 3.8 × 10− 9 A/cm2 at an electrical field of 1 kV/cm.  相似文献   

10.
Nitrogen-doped titanium dioxide (TiO2  xNx) thin films desirable for visible light photocatalysts were prepared by reactive sputtering using air/Ar mixtures. Using air as the reactive gas allows the process to conduct at high base pressures (low vacuum), which reduces substantially the processing time. The obtained films transformed from mixed phases to anatase phase as the air/Ar flow ratio increased. Substitutional doping of nitrogen verified by X-ray photoelectron spectroscopy accounts for the red-shift of absorption edge in the absorption spectra. Anatase TiO2  xNx films could incorporate up to about 7.5 at.% substitutional nitrogen and a maximum of 23 at.% nitrogen was determined in the films with mixed phases. The optical band gaps of the TiO2  xNx films calculated from Tauc plots varied from 3.05 to 3.11 eV and those of the mixed phase ranged from 2.77 to 3.00 eV, which are all lower than that for pure anatase TiO2 and fall into the visible light regime.  相似文献   

11.
D. He?man 《Vacuum》2006,81(3):285-290
This article reports on the characterization and preparation of N-doped titanium dioxide (TiO2) films by reactive magnetron sputtering from Ti(99.5) targets in a mixture of Ar/O2/N2 atmosphere on unheated glass substrates. A dual magnetron system supplied by a dc bipolar pulsed power source was used to sputter the TiOxNy films. The amount of N in the TiOxNy film ranges from 5 to 40 at%. Its structure was measured using X-ray diffraction (XRD), the optical band gap was calculated from Tauc plots and the decrease of the water contact angle αir after the film activation by UV irradiation was investigated as a function of at% of N in the TiOxNy film. The yellow-coloured TiOxNy films with high (≈8 at%) amount of N exhibited a strong decrease of the band gap Eg down to 2.7 eV. A significant decrease of the water contact angle αir after UV irradiation has been observed for 2 μm thick transparent nanocrystalline (anatase+rutile) N-doped TiO2 films containing less than 6 at% of N.  相似文献   

12.
Transparent semiconductor thin films of Zn1 − xTixO (0 ≦ x ≦ 0.12) were deposited on alkali-free glass substrates by the sol-gel method. The effects of Ti addition on the crystallization, microstructure, optical properties and resistivity of ZnO thin films were investigated. The as-coated films were preheated at 300 °C, and then annealed at 500 °C in air ambiance. X-ray diffraction results showed all polycrystalline Zn1  xTixO thin films with preferred orientation along the (002) plane. Ti incorporated within the ZnO thin films not only decreased surface roughness but also increased optical transmittance and electrical resistivity. In the present study, the Zn0.88Ti0.12O film exhibited the best properties, namely an average transmittance of 91.0% (an increase of ~ 12% over the pure ZnO film) and an RMS roughness value of 1.04 nm.  相似文献   

13.
This paper describes the synthesis and characterization of CuIn1 − xGaxSe2 − ySy (CIGSeS) thin-film solar cells prepared by rapid thermal processing (RTP). An efficiency of 12.78% has been achieved on ~ 2 µm thick absorber. Materials characterization of these films was done by SEM, EDS, XRD, and AES. J-V curves were obtained at different temperatures. It was found that the open circuit voltage increases as temperature decreases while the short circuit current stays constant. Dependence of the open circuit voltage and fill factor on temperature has been estimated. Bandgap value calculated from the intercept of the linear extrapolation was 1.1-1.2 eV. Capacitance-voltage analysis gave a carrier density of 4.0 × 1015 cm− 3.  相似文献   

14.
M.C. Liao  G.S. Chen 《Thin solid films》2010,518(24):7258-7262
A series of TiO2 thin films was deposited onto glass substrates without intentional heating or biasing by magnetron sputtering of a titanium target using Ar/O2 reactive mixtures over a broad range of total sputtering pressures from 0.12 Pa to 2.24 Pa. Each of the film types was deposited by the threshold poisoned mode at a specific given oxygen flow rate monitored in-situ by optical emission spectroscopy. Both the sputtering pressure and thermal annealing are the key factors for the TiO2 films to yield fast-response superhydrophilicity with a water contact angle of 5°. The mechanism of superhydrophilicity for the TiO2 films deposited by high-pressure sputtering will be discussed based on empirical studies of X-ray diffractometry, high-resolution scanning microscopy and atomic force spectroscopy.  相似文献   

15.
Electrical and optical properties of amorphous indium zinc oxide films   总被引:1,自引:0,他引:1  
Valence electron control and electron transport mechanisms on the amorphous indium zinc oxide (IZO) films were investigated. The amorphous IZO films were deposited by dc magnetron sputtering using an oxide ceramic IZO target (89.3 wt.% In2O3 and 10.7 wt.% ZnO). N-type impurity dopings, such as Sn, Al or F, could not lead to the increase in carrier density in the IZO. Whereas, H2 introduction into the IZO deposition process was confirmed to be effective to increase carrier density. By 30% H2 introduction into the deposition process, carrier density increased from 3.08 × 1020 to 7.65 × 1020 cm− 3, which must be originated in generations of oxygen vacancies or interstitial Zn2+ ions. Decrease in the transmittance in the near infrared region and increase in the optical band gap were observed with the H2 introduction, which corresponded to the increase in carrier density. The lowest resistivity of 3.39 × 10− 4 Ω cm was obtained by 10% H2 introduction without substrate heating during the deposition.  相似文献   

16.
Amorphous indium-gallium-zinc-oxide (a-IGZO) films were deposited by dc magnetron sputtering with H2O introduction and how the H2O partial pressure (PH2O) during the deposition affects the electrical properties of the films was investigated in detail. Resistivity of the a-IGZO films increased dramatically to over 2 × 105 Ωcm with increasing PH2O to 2.7 × 10− 2 Pa while the hydrogen concentration in the films increased to 2.0 × 1021 cm− 3. TFTs using a-IGZO channels deposited under PH2O at 1.6-8.6 × 10− 2 Pa exhibited a field-effect mobility of 1.4-3.0 cm2/Vs, subthreshold swing of 1.0-1.6 V/decade and on-off current ratio of 3.9 × 107-1.0 × 108.  相似文献   

17.
Transparent and conducting zirconium-doped zinc oxide films have been prepared by radio frequency magnetron sputtering at room temperature. The ZrO2 content in the target is varied from 0 to 10 wt.%. The films are polycrystalline with a hexagonal structure and a preferred orientation along the c axis. As the ZrO2 content increases, the crystallinity and conductivity of the film are initially improved and then both show deterioration. Zr atoms mainly substitute Zn atoms when the ZrO2 content are 3 and 5 wt.%, but tend to cluster into grain boundaries at higher contents. The lowest resistivity achieved is 2.07 × 10− 3 Ω cm with the ZrO2 content of 5 wt.% with a Hall mobility of 16 cm2 V− 1 s− 1 and a carrier concentration of 1.95 × 1020 cm− 3. All the films present a high transmittance of above 90% in the visible range. The optical band gap depends on the carrier concentration, and the value is larger at higher carrier concentration.  相似文献   

18.
Hydrated ZrO2 thin films were prepared by reactive sputtering in O2, H2O, and H2O + H2O2 mixed gas, and the effect of the sputtering atmosphere on ion conductivity of the films was investigated. The results showed that the films deposited in O2 gas exhibited poor ion conductivity; however, the ion conductivities of the films deposited in the other two kinds of atmosphere were similar and 300-500 times higher than that of the films deposited in O2 gas. It was indicated that the higher ion conductivity of the films was caused by lower film density and higher water content.  相似文献   

19.
The deposition of rutile phase TiO2 films on unheated substrates by radio frequency magnetron sputtering is elaborated. The effect of total pressure and O2/Ar flow ratio on the growth of rutile film on different substrates has been studied thoroughly. The development of crystalline phase along with film deposition rate, surface morphology, optical transmission and band gap were also investigated for various growth conditions. It was found that the rutile phase crystallinity increased with decrease in total pressure and increase in O2 flow. In addition, the grown rutile films have interesting optical characteristics such as high transmittance (~ 85%) and high refractive index (~ 2.7) with a band gap about 3.2 eV.  相似文献   

20.
Anatase titanium dioxide (TiO2) thin films are prepared by DC reactive magnetron sputtering using Ti target as the source material. In this work argon and oxygen are used as sputtering and reactive gas respectively. DC power is used at 100 W per 1 h. The distance between the target and substrate is fixed at 4 cm. The glass substrate temperature value varies from room temperature to 400 °C. The crystalline structure of the films is determined by X-ray diffraction analysis. All the films deposited at temperatures lower than 300 °C were amorphous, whereas films obtained at higher temperature grew in crystalline anatase phase. Phase transition from amorphous to anatase is observed at 400 °C annealing temperature. Transmittances of the TiO2 thin films were measured using UV-visible NIR spectrophotometer. The direct and indirect optical band gap for room temperature and substrate temperature at 400 °C is found to be 3.50, 3.41 eV and 3.50, 3.54 eV respectively. The transmittance of TiO2 thin films is noted higher than 75%. A comparison among all the films obtained at room temperature showed a transmittance value higher for films obtained at substrate temperature of 400 °C. The morphology of the films and the identification of the surface chemical stoichiometry of the deposited film at 400 °C were studied respectively, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The surface roughness and the grain size are measured using AFM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号