首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Smooth and pinhole-free thin films of Ga5Ge19Te76 have been obtained by vacuum evaporation. The as-deposited films are amorphous. Thermal annealing at 222°C leads to an amorphous-to-crystalline transition. A maximum contrast of 30% in reflectivity (measured at 1 µm) has been obtained on phase transition from amorphous to crystalline state. The optical constants and the bandgap are reported.  相似文献   

2.
Electronic structure calculations are presented for various model structures of the crystalline and amorphous phases of Ge2Sb2Te5. The structures are all found to possess a band gap of order 0.5 eV, indicating closed shell behaviour. It is pointed out that structural vacancies in A7-like Ge2Sb2Te5 are not electronically active. In addition, A7-like structures do not support valence alternation pair defects, which are one model of the conduction processes in the amorphous phase in non-volatile memories.  相似文献   

3.
Surface activity of thermally evaporated amorphous chalcogenide films of Ge2Sb2Te5 has been investigated. Silver (Ag) is readily deposited on such films from appropriate aqueous ionic solution and Ag diffuses into the films upon irradiation with energetic photons. The composition of Ge2Sb2Te5 thin films and the amount of Ag photo-diffused has been gathered from electron probe micro-analyzer having a wavelength dispersive spectrometer. The composition of the films was found to be very close to the bulk used to deposit films and the amount of Ag photo-diffused was ∼ 0.38 at. %. X-ray diffraction and temperature dependent sheet resistance studies have been used for the structural analysis of the bulk alloy, as-deposited, Ag photo-diffused and annealed films at different temperatures. The films remain amorphous after Ag photo-diffusion into the amorphous Ge2Sb2Te5 films. The reflectivity, reflectivity contrast and extinction coefficient of the crystalline and amorphous photo-diffused thin films are presented. The optical band gaps of the amorphous and crystalline photo-diffused (Ge2Sb2Te5)100−xAgx=0.38 phase change thin films have also been calculated from absorption data using UV-VIS spectroscopy.  相似文献   

4.
A. Dahshan   《Optical Materials》2009,32(1):247-250
Amorphous Ge20Se80−xCdx thin films with different compositions (x = 0, 2.5, 5, 7.5 and 10 at.%) were deposited onto glass substrates by thermal evaporation. The reflection spectra, R(λ), of the films at normal incidence were obtained in the spectral region from 400 to 2500 nm. Based on the use of the maxima and minima of the interference fringes, a straightforward analysis proposed by Minkov has been applied to derive the optical constants and the film thickness for the Ge20Se80−xCdx thin films. The dispersion of the refractive index is discussed in terms of the single-oscillator Wemple and DiDomenico model. Tauc relation for the allowed non-direct transition describes the optical transition in the studied films. With increasing cadmium content the refractive index increases while the optical band gap decreases. The optical band gap decreases from 2 to 1.5 eV with increasing cadmium content from 0 to 10 at.%. The chemical-bond approach has been applied successfully to obtain the excess of Se–Se homopolar bonds and the cohesive energy of the Ge20Se80−xCdx system.  相似文献   

5.
The synthesis and properties of CuAl2O4 thin films have been examined. The CuAl2O4 films were deposited via reactive direct current magnetron sputter using a CuAl2 target. As-deposited films were amorphous. Post-deposition annealing at high temperature in oxygen yielded solid-phase epitaxy on MgO. The film orientation was cube-on-cube epitaxy on (001) MgO single-crystal substrates. The films were transparent to visible light. The band gap of crystalline CuAl2O4 was determined to be ∼ 4 eV using a Tauc plot from the optical transmission spectrum. The dielectric constant of the amorphous films was determined to be ∼ 20-23 at 1-100 kHz.  相似文献   

6.
F.A. Al-Agel 《Vacuum》2011,85(9):892-897
The optical constants (absorption coefficient, optical band gap, refractive index, extinction coefficient, real and imaginary parts of dielectric constants) of amorphous and thermally annealed thin films of Ga15Se77In8 chalcogenide glasses with thickness 4000 Å have been investigated from absorption and reflection spectra as a function of photon energy in the wave length region 400-800 nm. Thin films of Ga15Se77In8 chalcogenide glasses were thermally annealed for 2 h at three different annealing temperatures 333 K, 348 K and 363 K, which are in between the glass transition and crystallization temperature of Ga15Se77In8 glasses. Analysis of the optical absorption data shows that the rule of non-direct transitions predominates. It was found that the optical band gap decreases with increasing annealing temperature. It has been observed that the value of absorption coefficient and extinction coefficient increases while the values of refractive index decrease with increasing annealing temperature. The decrease in optical band gap is explained on the basis of the change in nature of films, from amorphous to crystalline state. The dc conductivity of amorphous and thermally annealed thin films of Ga15Se77In8 chalcogenide glasses is also reported for the temperature range 298-393 K. It has been observed that the conduction is due to thermally assisted tunneling of the carriers in the localized states near the band edges. The dc conductivity was observed to increase with the corresponding decrease in activation energy on increasing annealing temperature in the present system. These results were analyzed in terms of the Davis-Mott model.  相似文献   

7.
It is important to know the behaviour of materials under the influence of radiation for the effective design of novel sensor systems. Optical properties of bismuth germinate (Bi4Ge3O12—BGO) thin films were investigated in terms of their perception to gamma radiation exposure. An Edwards E306A vacuum thermal coating system was used for thin films deposition. BGO films with a thickness of 200 nm were exposed to a disk-type 137Cs gamma radiation source with an activity of 370 kBq. Optical properties of the films were investigated using CARY IE UV-Visible Spectrophotometer. Calculated optical band gap for as-deposited BGO thin film was 1.95 eV. Gamma radiation induced changes in the optical properties of thin films, which could be explained by the variation in the degree of disorder. From the density-of-state model, it is known that optical band gap decreases with an increasing degree of disorder of the amorphous phase.Electrical properties of BGO thin films were recorded in real time using a low power capacitive interface system with a high resolution, which is based on Delta-sigma modulator. At doses from 0 to 1.5 mGy little if any changes in the capacitance were measured. This could be explained by co-existence of two processes, namely creation and annihilation of defects under the influence of radiation. After a threshold dose of 1.5 mGy creation of defects becomes more prevailing and the BGO film capacitance has gradually increased in value from 2.97 pF to 7.09 pF after irradiation with a 2.44 mGy dose.  相似文献   

8.
Ga2O3 thin films were deposited on sapphire (0001) substrates by low-pressure metal organic chemical vapor deposition. The influence of annealing in N2 atmosphere at the temperature in the range of 800–1,000 °C was investigated by X-ray diffraction and optical transmittance spectra. With an increase of annealing temperature from 800 to 950 °C, the transformation from the initial amorphous film to polycrystalline β-Ga2O3 thin film was observed, and the transmittance was also improved remarkably. The optical band gap energy of the sample annealed at 950 °C was evaluated as ~5 eV. Whereas, after an annealing at 1,000 °C, the crystal quality became worse and the transmittance degraded. The mechanism of annealing in N2 atmosphere was discussed in view of phase transition.  相似文献   

9.
Hydrogenated silicon thin films deposited by VHF PECVD process for various silane flow rates have been investigated. The silane flow rate was varied from 5 sccm to 30 sccm, maintaining all other parameters constant. The electrical, structural and optical properties of these films were systematically studied as a function of silane flow rate. These films were characterized by Raman spectroscopy, Scanning Electron Microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared (FTIR) spectroscopy and UV–visible (UV–Vis) spectroscopy. Different crystalline volume fraction (22%–60%) and band gap (∼1.58 eV–∼1.96 eV) were achieved for silicon thin films by varying the silane concentration. A transition from amorphous to nanocrystalline silicon has been confirmed by Raman and FTIR analysis. The film grown at this transition region shows the high conductivity in the order of 10−4 Ω−1 cm−1.  相似文献   

10.
The Bi and Sn were doped to Ge2Sb2Te5 (GST) to investigate and modify the phase transition characteristics. The Bi/Sn doped GST thin film was prepared by RF magnetron co-sputtering and its crystal structure, sheet resistance, and phase transition kinetics were analyzed. By the doping of Bi/Sn, the crystallization temperature or stable phase was changed slightly compared with GST. For the PRAM application, the optimum doping concentration was Bi 5.9 and Sn 17.7 at.%, and its minimum time for crystallization was shorten more than 30% compared with GST. The sheet resistance difference between amorphous and crystalline state was higher than 104 Ω/□.  相似文献   

11.

Studying the linear and non-linear optical properties is critical in terms of technological application, as it aids in developing the semiconducting materials for optoelectronic applications. Consequently, the present studies report the investigation of the influence of thermal annealing on the structural, morphology, linear, and non-linear optical properties of Ge10Se78Ag12 thin films. X-ray diffraction analysis confirmed the amorphous state of Ge10Se78Ag12 composition. The studied composition was annealed at a temperature between the glass transition and crystallization, and the annealing temperature Tan affected the number and intensity of crystalline phases. Some peaks disappeared at 383 K, indicating that this temperature represents a transition in the structure of the studied materials. The morphological changes caused by the thermal treatment were observed by the scanning electron microscopy (SEM). On the other hand, the linear and non-linear optical constants varied with Tan. The band gap was found to decrease from 1.70 to 1.43 eV and then increase to 1.91 eV with increasing the temperature from 363 to 573 K, confirming the presence of structural transition at 383 K. The optical and electrical conductivities were determined and found to vary with the temperature. The present results were analyzed and discussed.

  相似文献   

12.
Ge0.7Mn0.3 thin films were fabricated on Al2O3 (0001) and glass substrates at growth temperatures ranging from room temperature to 500 °C by a radio frequency magnetron sputtering. We found that the Ge0.7Mn0.3 thin films showed a polycrystalline-to-amorphous transition at about 360 °C, and the ferromagnetic transition temperature of each thin film depends on its structure — crystalline or amorphous states. Particularly, the Ge0.7Mn0.3 thin films showed room temperature ferromagnetism when they were fabricated at temperatures above the crystallization temperature.  相似文献   

13.
Hybrid film structures of the photonic crystal (opal)/glassy chalcogenide semiconductor (Ge2Sb2Te5) type, which exhibit strong variations in the intensity of reflected light due to the resonant excitation of anomalous diffraction (Wood anomaly), have been synthesized. A method of controlling the resonant optical response of the obtained structures is proposed that is based on a thermoinduced phase transition from the amorphous to crystalline state in the Ge2Sb2Te5 film.  相似文献   

14.
Sn0.2Bi1.8Te3 thin films were grown using the thermal evaporation technique on a (001) face of NaCl crystal as a substrate at room temperature. The optical absorption was measured in the wave number range 500–4000 cm−1. From the optical absorption data the band gap was evaluated and studied as a function of film thickness and deposition temperature. The data indicate absorption through direct interband transition with a band gap of around 0.216 eV. The detailed results are reported here.  相似文献   

15.
《Materials Letters》2007,61(23-24):4516-4518
The present work deals with thickness dependent study of the thin films of Ge10Se90  xTex (x = 0, 10) chalcogenide glasses. Bulk samples of Ge10Se90 and Ge10Se80Te10 have been prepared by melt quenching technique. Thin films (thickness d = 800 nm and 1100 nm) of the prepared samples have been deposited on glass substrate using vacuum evaporation technique. The optical parameters i.e. optical band gap (Egopt), absorption coefficient (α), refractive index (n) and extinction coefficient (k) are calculated from the transmission spectrum in the range 400–1500 nm. The optical band gap decreases with the increase of thickness from 1.87 ± 0.01 eV (d = 800 nm) to 1.80 ± 0.01 eV (d = 1100 nm) for Ge10Se90 and from 1.62 ± 0.01 eV (d = 800 nm) to 1.48 ± 0.01 eV (d = 1100 nm) for Ge10Se80Te10 thin films.  相似文献   

16.
The stability of flash-evaporated amorphous Ge2Sb2Te5 thin films has been studied under medium-term temperature treatment (30 - 80 °C, with a step of 10 °C) in ten subsequent heating and cooling cycles. The significant changes in structure and optical properties are reported. The temperature cycling of the films resulted in formation of an isolated 5 - 7 nm nano-crystalline phase in the amorphous phase. The corresponding increase in refractive index and change in optical bandgap energy and sheet resistance are also presented. The formation of Ge2Sb2Te5 nano-crystals (~ 5 - 7 nm) even under temperature below 80 °C could contribute to the explanation of mechanism of resistivity fluctuation (drift) of the “amorphous phase” films. We also show that the optical and electrical properties of flash evaporated Ge2Sb2Te5 thin films are very similar to those reported for sputtered films.  相似文献   

17.
Optical properties and conductivity of glassy (As2Se3)3−x(As2Te3)x were studied for 0 ≤ x ≤ 3. The films of the above mentioned compound were prepared by thermal evaporation with thickness of about 250 nm. The optical-absorption edge is described and calculated using the non-direct transition model and the optical band gap is found to be in the range of 0.92 to 1.84 eV. While, the width of the band gap tail exhibits opposite behaviour and is found to be in the range of 0.157 to 0.061 eV, this behaviour is believed to be associated with cohesive energy and average coordination number. The conductivity measurement on the thin films is reported in the temperature range from 280 to 190 K. The conduction that occurs in this low-temperature range is due to variable range hopping in the band tails of localized states, which is in reasonable agreement with Mott's condition of variable range hopping conduction. Some parameters such as coordination number, molar volume and theoretical glass transition temperature were calculated and discussed in the light of the topological bonding structure.  相似文献   

18.
Magnesium nickel hydride films have earlier been suggested for several optoelectronic applications, but the optical properties and band gap have not been firmly established. In this work, the dielectric functions and the optical band gaps of thin films of Mg2NiH4 have been determined experimentally from optical modeling using spectroscopic ellipsometry and spectrophotometry in the photon energy range between 0.7 and 4.2 eV. Samples were prepared by reactive sputtering, resulting in a single-layer geometry that could easily be studied by ellipsometry. Crystalline samples were prepared by annealing the as-deposited amorphous films ex-situ. The resulting films remained in the high temperature cubic Mg2NiH4 structure even after cooling to room temperature. Tauc analysis of the dielectric functions shows that Mg2NiH4 films exhibit a band gap of 1.6 eV for the amorphous structure and 2.1 eV for the cubic crystalline structure.  相似文献   

19.
In this article, effect of Sn on the electrical, optical, and thermal properties of Ge2Sb2Te5 is studied. Ge2Sb2Te5, Ge1.55Sb2Te5Sn0.45, and Ge1.1Sb2Te5Sn0.9 alloys are prepared by melt quenching technique and their thin films are prepared by thermal evaporation on glass substrates. These materials are then characterized by differential scanning calorimetry, X-ray diffraction, optical method, and impedance measurements. Doping with Sn maintains the NaCl-type crystalline structure of Ge2Sb2Te5. Activation energy (E a) for crystallization is calculated by Kissinger’s method. E a decreases slightly from 2.56 eV for Ge2Sb2Te5 to 2.24 eV for Ge1.1Sb2Te5Sn0.9. The distinct change in extinction coefficient (k) of Ge2Sb2Te5 and Sn-doped amorphous films is found in the visible region. A large increase in optical contrast (C) is observed in the Sn-doped phase change materials. The phase change transition is studied using impedance measurements as a function of temperature. Impedance measurements show the appearance of nucleation centers in samples heated at temperatures below crystallization temperature (T c) and above glass transition temperature (T g).  相似文献   

20.
Different compositions of Bi5GexSe95−x (x = 30, 35, 40 and 45 at %) thin films were deposited onto cleaned glass substrates by thermal evaporation method. The structural characterization revealed that, the as-prepared films of x = 30, 35 and 40 at. % are in amorphous state but there are few tiny crystalline peaks of relatively low intensity for the film with x = 45 at. %. The chemical composition of the as-prepared Bi5GexSe65−x films has been checked using energy dispersive X-ray spectroscopy (EDX). The optical properties for the as-deposited Bi5GexSe65−x thin films have been studied. The additions of Ge content were found to affect the optical constants (refractive index, n and the extinction coefficient, k). Tauc’s relation for the allowed indirect transition is successfully describing the mechanism of the optical absorption. It was found that, the optical energy gap (Eg) decreases with the increase in Ge content. These obtained results were discussed in terms of the chemical bond approach proposed by Bicermo and Ovshinsky. The composition dependence of the refractive index was discussed in terms of the single oscillator model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号