首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
《炼铁》2017,(4)
对长钢9号高炉炉缸温度升高后的护炉操作情况进行了分析总结。9号高炉炉缸二段冷却壁热流强度超出报警值(9.3kW/m~2),多处温度升高(最高达356℃)。为此,采取了加大冷却强度、配加钛球护炉、调整送风面积及长度、压浆造衬等一系列措施,取得了较好的护炉效果,炉缸温度呈现下降趋势(降至266℃),炭砖的侵蚀速度得到控制。认为,9号高炉目前炉缸状况具备安全运行基础,但不能长期维持高冶强生产。  相似文献   

2.
宣钢8号高炉由于南铁口区域炉缸炭砖温度和对应冷却壁水温差、热流强度等异常升高,于2008年9月份堵风口作业,进行综合护炉。在护炉期间,通过制度优化调整、强化过程参数控制、加强外围协调组织等措施,实现了炉况长期稳定顺行和技术经济指标的改善优化。  相似文献   

3.
阐述了高炉炉役末期维护的主要方法,包括铜冷却壁维护技术,即安装金属软管、安装微型冷却器和整体更换冷却壁的方法恢复冷却功能;炉缸维护技术,即在炉缸炭砖热面形成稳定保护层。介绍了保护层形成机理和几种方法,重点介绍了采用钒钛矿护炉的效果、时机和方法。为了加强炉役末期监控,提出增加热电偶、安装冷却壁进出水温度计、安装炉壳无线温度计和加强炉缸炭砖侵蚀综合判断等方法。  相似文献   

4.
焦克新  张建良  刘征建  杨天钧 《钢铁》2020,55(8):193-198
 高炉长寿化是大型高炉发展的必然趋势,实现高炉长寿的关键在于弄清高炉侵蚀的根本原因。从高炉炉缸侵蚀机理、高炉炉缸象脚型侵蚀原因、高炉炉缸圆周方向侵蚀不均匀性、高炉冷却强度与冷却效率以及高炉炉缸维护技术等5个方面探讨了高炉长寿存在的共性问题,指出高炉炉缸炭砖损毁的本质是碳不饱和铁水对炭砖的溶蚀。具体结果表明,首先,高炉炉缸象脚型侵蚀最严重部位位于高炉炉缸死料柱的根部位置;其次,阐明了直接导致高炉存在不均匀侵蚀的主要原因在于冷却系统的冷却水量和送风系统的风量在高炉周向方向分配不均匀;然后,阐明了冷却系统的作用本质是降低耐火材料热面温度,并提出了高炉冷却强度指数及高炉冷却效率指数;最后,分析了采用无钛矿护炉和钛矿护炉两种模式的高炉炉缸维护技术。  相似文献   

5.
《炼铁》2015,(6)
针对柳钢5号高炉炉缸南面侧壁温度异常升高、炭砖侵蚀速度加快的现象,采取了增加炉缸侧壁侵蚀监控系统、采用炭质炭化硅灌浆料提高炉缸侧壁导热性能、局部强化冷却、钒钛护炉等措施,避免了炉缸发生烧穿的危险。取得的主要经验有:①对炉缸侧壁环炭微孔炭砖侵蚀线的监控,在陶瓷杯开始破损时采用局部强化冷却和灌浆方式,可以有效提高炉缸侧壁的导热性能,使1150℃侵蚀线的位置离开残余炭砖内端面,这是炉缸侧壁护炉的关键。②采用钒钛球团矿护炉时,在陶瓷杯不同的破损阶段采用不同的方法进行护炉,既要保证炉况顺行,又能在环炭靠炉缸侧壁内端面形成保护层,防止环流铁水冲刷保护层,这是护炉的重点。  相似文献   

6.
简要分析了湘钢1号高炉炉缸侧壁温度升高的原因,重点阐述了侧壁温度升高的治理措施。认为,长期高强度冶炼加剧了渣铁对炭砖的冲刷,炭砖受到侵蚀是导致1号高炉炉缸侧壁温度升高的根本原因。通过采取提高冷却强度、使用钒钛炮泥和钒钛球护炉、降低冶炼强度、调整风口布局等措施,1号高炉炉缸侧壁温度降到了报警值以内,803C点温度稳定在520℃左右,703C点温度稳定在650℃并呈继续下降趋势,炉缸侵蚀得到有效控制。  相似文献   

7.
朱聂胜  曹养斋 《炼铁》2020,39(1):51-53
重钢1号高炉炉缸侧壁温度上涨明显,呈现比较快速的典型象脚状侵蚀。炉缸侵蚀的原因主要是风口频繁烧坏后带水作业时间长,原燃料碱金属、Zn负荷重,焦炭质量波动大。通过采取钛矿护炉、堵风口控制冶炼强度、加长风口长度和缩小风口直径、加强炉缸冷却、改善原燃料质量等综合护炉措施,使炉缸侵蚀得到了有效控制,保持了护炉状态下的长期稳定顺行。  相似文献   

8.
《炼铁》2017,(1)
对通钢3号高炉炉缸侵蚀的原因及护炉措施进行了总结分析。3号高炉炉缸侧壁T1107-13点温度最高达到604℃,且高温点有两处炭砖剩余厚处在700~900mm的危险范围。造成炉缸侵蚀的原因,主要是焦炭质量下降、炭砖质量问题和锌的富集。通过采取炉缸压浆、降低冶炼强度、钛矿护炉、增强炉缸冷却强度等护炉措施,炉缸侧壁温度逐渐下降,T1107-13点温度下降至198℃,护炉取得了良好的效果。  相似文献   

9.
郭先燊  张杰  陈晓军 《炼铁》2021,40(3):50-53
对邯钢8号高炉炉役后期的护炉及强化冶炼实践进行了总结.根据8号高炉炉缸侧壁呈周期性"急性"侵蚀特征,在炉缸侧壁推算最薄处炭砖残余厚度仅401 mm的情况下,采取了强化冷却和监控、合理控制铁水硅钛含量、使用含钛炮泥、改善焦炭质量、调整出铁频次等常规护炉措施,在侧壁炭砖处于低温安全期时,仍然保持正常强化水平,甚至加风加氧进...  相似文献   

10.
《炼铁》2015,(4)
鞍钢新1号高炉生产7年零9个月后,在休风灌浆过程中发生炉缸渗铁事故。利用炉缸换衬机会进行了破损调查,取不同部位的残存炭砖、渣皮和黏结物进行理化性能检测,分析碱金属和锌在炉缸内衬的分布状况及钒钛矿护炉效果。结果表明,高炉炉缸炭砖异常侵蚀的主要原因有:炉缸冷却水量不足,冷却壁水管规格小,内衬温度监测点少;炭砖耐氧化侵蚀指标低;微孔炭砖小于1μm孔容积百分率指标偏低;碱金属和Zn的化学侵蚀。  相似文献   

11.
李洋龙  程树森 《钢铁》2014,49(5):13-18
 从传热学角度通过建立炉缸传热数学模型,分别对大块炭砖的炉缸结构和小块炭砖的炉缸结构进行了讨论。计算了它们在烘炉阶段和高炉开炉后炉缸砖衬的温度,发现了按照目前的烘炉规范进行烘炉,难以将炭砖与冷却壁间的填料烘干,填料的导热系数达不到设计值。填料的存在导致砖衬热面温度升高,致使砖衬侵蚀加剧。因此,在冷却壁与炭砖之间取消填料,让炭砖直接顶砌冷却壁具有明显的传热优势。对于使用小块炭砖的炉缸,可以直接将炭砖顶砌冷却壁,消灭填料对炉缸传热的限制影响;对于大块炭砖结构的炉缸,先采用部分小块炭砖顶砌冷却壁,在小块与大块炭砖间使用填料,将填料向高炉内部推移约200mm以上,烘炉阶段为了将填料烘干,冷却壁断水烘炉是必需的,为了保证冷却壁的安全,同时讨论了冷却壁断水烘炉应注意的问题。  相似文献   

12.
针对宣钢8号高炉南铁口区域炉缸炭砖温度、对应冷却壁水温差、热流强度均发生异常升高的现象,通过采取了一系列应对措施,如监控观测、强制综合护炉、建立新的操作炉型等,保证了高炉安全生产,并实现了高炉的稳定顺行和技术经济指标的改善.  相似文献   

13.
杨耀明  但家云  谭清涛 《炼铁》2019,38(2):36-38
湘钢1号高炉大修投产后不到两年,1号铁口方向炉缸侧壁炭砖温度急速上升,最高升至740℃究其原因主要是铁口深度偏浅、长时间异常炉况、有害元素负荷偏高及冶炼强度偏高等。通过采取优化装料制度、提高风速和鼓风动能、调整冷却制度、添加钛球等护炉措施,炉缸侧壁炭砖温度得到控制、实践表明,单个护炉措施不会达到理想效果,需要多种护炉措施融合的综合护炉技术。  相似文献   

14.
对高炉炉缸侵蚀特征进行了分析,铁口以下是炭砖重点侵蚀区域。在铁口以下选择超微孔炭砖、合适的冷却器结构形式和冷却制度、高炉定期采用钒钛矿护炉,可以在炭砖热面生成由金属Fe、FeO、石墨C、SiO2、Al2O3、Ti(C,N)等构成的永久性内衬,防止或减轻炭砖侵蚀。  相似文献   

15.
陈生利  匡洪锋  蔡林 《炼铁》2019,38(2):33-35
韶钢7号高炉在炉役后期,逐渐出现炉体上涨,炉身区域冷却壁大量烧坏,炉缸侧壁温度频繁超标,风口变形等现象通过采取优化工艺操作,冷却壁穿管修复,加强炉缸炭砖残厚管理,提高炉体冷却强度等一系列护炉措施,在稳定炉况的同时,高炉日产量也能达到6200t/d。7号高炉护炉效果表明,追求精料入炉的操作理念,维持好合理稳定的煤气流分布,达到合理的操作炉型,是高炉护炉的最有效手段。  相似文献   

16.
为延长高炉的使用寿命和掌握炉缸砖衬的侵蚀机制,结合绘制的炉缸侵蚀炉型图,并借助扫描电镜、EDS电子探针和X射线衍射仪等手段分析炉缸炭砖的形貌、元素和物相。研究表明:炉缸炭砖表面上有明显的白色絮状物,且炭砖表面出现疏松和粉化的现象,导致炭砖出现裂缝,加快炭砖侵蚀;富集在炭砖热面的钛化物起到了保护衬作用,使有害元素难以存在受铁水冲刷程度严重的炭砖表面;21号~22号风口和相对应的8号~9号风口正上方对应着热风围管与送风支管连结的三岔口位置,侵蚀最严重;炉缸中锌与一氧化碳以及炭砖中的硅氧化物等物质反应生成氧化锌、硅锌矿和石墨等物质,并透过炭砖的气孔和通缝等逐渐渗入炭砖内部,致使炭砖体积发生膨胀,从而导致炉衬侵蚀。  相似文献   

17.
《炼铁》2015,(5)
对安钢1号高炉缸侧壁温度异常升高的治理经验进行了总结。1号高炉缸侧壁温度异常升高的原因主要是炉缸冷却壁与炭砖之间存在气隙、强化冶炼程度大,以及炉缸存在"象脚"状侵蚀。通过实施常规护炉措施,并配加含钛炉料进行护炉,1号高炉炉缸侧壁温度上升的势头得到有效的遏制,并把温度控制在安全范围之内。实践表明,以含钛炉料护炉技术为中心的综合护炉技术,对于延长炉役后期的高炉寿命是有效的。  相似文献   

18.
唐文华  肖国梁  胡峻峰  刘佳  尹凯 《炼铁》2023,(3):24-27+32
衡钢1号高炉大修投产后不到2年,炉缸个别点温度最高上升到900℃左右,危及安全生产,被迫停炉中修。停炉后观察发现,炉缸炉底呈“象脚状”侵蚀,炉缸第1层炭砖侵蚀严重,最薄弱处炭砖残余厚度仅240mm,从残铁口扒渣门两边炉缸第7~9层炭砖中部可见明显的环裂缝。认为1号高炉炉缸炭砖侵蚀过快的原因主要是:(1)高冶炼强度操作,且炉缸直径偏小,致使炉缸铁水环流强;(2)炉缸炉底耐材部分指标不达标;(3)炭砖冷面与冷却壁之间的炭素捣打料层存在气隙;(4)Pb、Zn及碱金属等有害元素控制不力;(5)铁口深度合格率低。  相似文献   

19.
针对新钢6号高炉炉役后期炉缸冷却壁水温差和热流强度超标的现象,采取调整热制度和造渣制度、加长风口、加强炉外管理及加钒钛矿护炉等措施,使得炉缸冷却壁热流强度得到合理控制,实现了高炉炉役后期安全稳定运行的目标。  相似文献   

20.
文章分析了影响欧冶炉炉缸活跃性的主要因素,提出改善欧冶炉炉炉缸活跃性的技术措施。通过对炉缸及炉底中心点温度变化趋势的监测,判断欧冶炉炉炉缸活跃性的强弱。影响欧冶炉炉缸活跃的因素有:入炉品位、焦炭质量、竖炉金属化率、风口送风参数、炉前作业、冷却制度等。采取降低气化炉入炉原燃料粉末、适宜的送风参数、稳定提升竖炉金属化率、调整冷却水量等综合技术措施和手段,可有效改善欧冶炉炉缸活跃性和控制炉缸侧壁侵蚀。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号