首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
《工程(英文)》2020,6(10):1122-1129
  相似文献   

2.
    
Short-term forecasts of the dynamics of coronavirus disease 2019 (COVID-19) in the period up to its decline following mass vaccination was a task that received much attention but proved difficult to do with high accuracy. However, the availability of standardized forecasts and versioned datasets from this period allows for continued work in this area. Here, we introduce the Gaussian infection state space with time dependence (GISST) forecasting model. We evaluate its performance in one to four weeks ahead forecasts of COVID-19 cases, hospital admissions and deaths in the state of California made with official reports of COVID-19, Google’s mobility reports and vaccination data available each week. Evaluation of these forecasts with a weighted interval score shows them to consistently outperform a naive baseline forecast and often score closer to or better than a high-performing ensemble forecaster. The GISST model also provides parameter estimates for a compartmental model of COVID-19 dynamics, includes a regression submodel for the transmission rate and allows for parameters to vary over time according to a random walk. GISST provides a novel, balanced combination of computational efficiency, model interpretability and applicability to large multivariate datasets that may prove useful in improving the accuracy of infectious disease forecasts.  相似文献   

3.
4.
    
In December 2019, a group of people in Wuhan city of Hubei province of China were found to be affected by an infection called dark etiology pneumonia. The outbreak of this pneumonia infection was declared a deadly disease by the China Center for Disease Control and Prevention on January 9, 2020, named Novel Coronavirus 2019 (nCoV-2019). This nCoV-2019 is now known as COVID-19. There is a big list of infections of this coronavirus which is present in the form of a big family. This virus can cause several diseases that usually develop with a serious problem. According to the World Health Organization (WHO), 2019-nCoV has been placed as the modern generation of Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS) coronaviruses, so COVID-19 can repeatedly change its internal genome structure to extend its existence. Understanding and accurately predicting the mutational properties of the genome structure of COVID-19 can form a good leadership role in preventing and fighting against coronavirus. In this research paper, an analytical approach has been presented which is based on the k-means cluster technique of machine learning to find the clusters over the mutational properties of the COVID-19 viruses’ complete genome. This method would be able to act as a promising tool to monitor and track pathogenic infections in their stable and local genetics/hereditary varieties. This paper identifies five main clusters of mutations with as best in most cases in the coronavirus that could help scientists and researchers develop disease control vaccines for the transformation of coronaviruses.  相似文献   

5.
    
Knowing COVID-19 epidemiological distributions, such as the time from patient admission to death, is directly relevant to effective primary and secondary care planning, and moreover, the mathematical modelling of the pandemic generally. We determine epidemiological distributions for patients hospitalized with COVID-19 using a large dataset (N = 21 000 − 157 000) from the Brazilian Sistema de Informação de Vigilância Epidemiológica da Gripe database. A joint Bayesian subnational model with partial pooling is used to simultaneously describe the 26 states and one federal district of Brazil, and shows significant variation in the mean of the symptom-onset-to-death time, with ranges between 11.2 and 17.8 days across the different states, and a mean of 15.2 days for Brazil. We find strong evidence in favour of specific probability density function choices: for example, the gamma distribution gives the best fit for onset-to-death and the generalized lognormal for onset-to-hospital-admission. Our results show that epidemiological distributions have considerable geographical variation, and provide the first estimates of these distributions in a low and middle-income setting. At the subnational level, variation in COVID-19 outcome timings are found to be correlated with poverty, deprivation and segregation levels, and weaker correlation is observed for mean age, wealth and urbanicity.  相似文献   

6.
The global pandemic of coronavirus disease 2019 (COVID-19) has challenged healthcare systems worldwide. Lockdown, social distancing, and screening are thought to be the best means of stopping the virus from spreading and thus of preventing hospital capacity from being overloaded. However, it has also been suggested that effective outpatient treatment can control pandemics. We adapted a mathematical model of the beneficial effect of lockdown on viral transmission and used it to determine which characteristics of outpatient treatment would stop an epidemic. The data on confirmed cases, recovered cases, and deaths were collected from Santé Publique France. After defining components of the epidemic flow, we used a Morris global sensitivity analysis with a 10-level grid and 1000 trajectories to determine which of the treatment parameters had the largest effect. Treatment effectiveness was defined as a reduction in the patients'' contagiousness. Early treatment initiation was associated with better disease control—as long as the treatment was highly effective. However, initiation of a treatment with a moderate effectiveness rate (5%) after the peak of the epidemic was still better than poor distancing (i.e. when compliance with social distancing rules was below 60%). Even though most of today''s COVID-19 research is focused on inpatient treatment and vaccines, our results emphasize the potentially beneficial impact of even a moderately effective outpatient treatment on the current pandemic.  相似文献   

7.
    
《工程(英文)》2021,7(7):948-957
The coronavirus disease 2019 (COVID-19) pandemic is a global crisis, and medical systems in many countries are overwhelmed with supply shortages and increasing demands to treat patients due to the surge in cases and severe illnesses. This study aimed to assess COVID-19-related essential clinical resource demands in China, based on different scenarios involving COVID-19 spreads and interventions. We used a susceptible–exposed–infectious–hospitalized/isolated–removed (SEIHR) transmission dynamics model to estimate the number of COVID-19 infections and hospitalizations with corresponding essential healthcare resources needed. We found that, under strict non-pharmaceutical interventions (NPIs) or mass vaccination of the population, China would be able to contain community transmission and local outbreaks rapidly. However, under scenarios involving a low intensity of implemented NPIs and a small proportion of the population vaccinated, the use of a peacetime–wartime transition model would be needed for medical source stockpiles and preparations to ensure a normal functioning healthcare system. The implementation of COVID-19 vaccines and NPIs in different periods can influence the transmission of COVID-19 and subsequently affect the demand for clinical diagnosis and treatment. An increased proportion of asymptomatic infections in simulations will not reduce the demand for medical resources; however, attention must be paid to the increasing difficulty in containing COVID-19 transmission due to asymptomatic cases. This study provides evidence for emergency preparations and the adjustment of prevention and control strategies during the COVID-19 pandemic. It also provides guidance for essential healthcare investment and resource allocation.  相似文献   

8.
    
COVID-19 has caused severe health complications and produced a substantial adverse economic impact around the world. Forecasting the trend of COVID-19 infections could help in executing policies to effectively reduce the number of new cases. In this study, we apply the decomposition and ensemble model to forecast COVID-19 confirmed cases, deaths, and recoveries in Pakistan for the upcoming month until the end of July. For the decomposition of data, the Ensemble Empirical Mode Decomposition (EEMD) technique is applied. EEMD decomposes the data into small components, called Intrinsic Mode Functions (IMFs). For individual IMFs modelling, we use the Autoregressive Integrated Moving Average (ARIMA) model. The data used in this study is obtained from the official website of Pakistan that is publicly available and designated for COVID-19 outbreak with daily updates. Our analyses reveal that the number of recoveries, new cases, and deaths are increasing in Pakistan exponentially. Based on the selected EEMD-ARIMA model, the new confirmed cases are expected to rise from 213,470 to 311,454 by 31 July 2020, which is an increase of almost 1.46 times with a 95% prediction interval of 246,529 to 376,379. The 95% prediction interval for recovery is 162,414 to 224,579, with an increase of almost two times in total from 100802 to 193495 by 31 July 2020. On the other hand, the deaths are expected to increase from 4395 to 6751, which is almost 1.54 times, with a 95% prediction interval of 5617 to 7885. Thus, the COVID-19 forecasting results of Pakistan are alarming for the next month until 31 July 2020. They also confirm that the EEMD-ARIMA model is useful for the short-term forecasting of COVID-19, and that it is capable of keeping track of the real COVID-19 data in nearly all scenarios. The decomposition and ensemble strategy can be useful to help decision-makers in developing short-term strategies about the current number of disease occurrences until an appropriate vaccine is developed.  相似文献   

9.
    
Starting from late 2019, the new coronavirus disease (COVID-19) has become a global crisis. With the development of online social media, people prefer to express their opinions and discuss the latest news online. We have witnessed the positive influence of online social media, which helped citizens and governments track the development of this pandemic in time. It is necessary to apply artificial intelligence (AI) techniques to online social media and automatically discover and track public opinions posted online. In this paper, we take Sina Weibo, the most widely used online social media in China, for analysis and experiments. We collect multi-modal microblogs about COVID-19 from 2020/1/1 to 2020/3/31 with a web crawler, including texts and images posted by users. In order to effectively discover what is being discussed about COVID-19 without human labeling, we propose a unified multi-modal framework, including an unsupervised short-text topic model to discover and track bursty topics, and a selfsupervised model to learn image features so that we can retrieve related images about COVID-19. Experimental results have shown the effectiveness and superiority of the proposed models, and also have shown the considerable application prospects for analyzing and tracking public opinions about COVID-19.  相似文献   

10.
    
COVID-19 has been considered one of the recent epidemics that occurred at the last of 2019 and the beginning of 2020 that world widespread. This spread of COVID-19 requires a fast technique for diagnosis to make the appropriate decision for the treatment. X-ray images are one of the most classifiable images that are used widely in diagnosing patients’ data depending on radiographs due to their structures and tissues that could be classified. Convolutional Neural Networks (CNN) is the most accurate classification technique used to diagnose COVID-19 because of the ability to use a different number of convolutional layers and its high classification accuracy. Classification using CNNs techniques requires a large number of images to learn and obtain satisfactory results. In this paper, we used SqueezNet with a modified output layer to classify X-ray images into three groups: COVID-19, normal, and pneumonia. In this study, we propose a deep learning method with enhance the features of X-ray images collected from Kaggle, Figshare to distinguish between COVID-19, Normal, and Pneumonia infection. In this regard, several techniques were used on the selected image samples which are Unsharp filter, Histogram equal, and Complement image to produce another view of the dataset. The Squeeze Net CNN model has been tested in two scenarios using the 13,437 X-ray images that include 4479 for each type (COVID-19, Normal and Pneumonia). In the first scenario, the model has been tested without any enhancement on the datasets. It achieved an accuracy of 91%. But, in the second scenario, the model was tested using the same previous images after being improved by several techniques and the performance was high at approximately 95%. The conclusion of this study is the used model gives higher accuracy results for enhanced images compared with the accuracy results for the original images. A comparison of the outcomes demonstrated the effectiveness of our DL method for classifying COVID-19 based on enhanced X-ray images.  相似文献   

11.
12.
    
In Wuhan, China, a novel Corona Virus (COVID-19) was detected in December 2019; it has changed the entire world and to date, the number of diagnosed cases is 38,756,2891 and 1,095,2161 people have died. This happened because a large number of people got affected and there is a lack of hospitals for COVID-19 patients. One of the precautionary measures for COVID-19 patients is isolation. To support this, there is an urgent need for a platform that makes treatment possible from a distance. Telemedicine systems have been drastically increasing in number and size over recent years. This increasing number intensifies the extensive need for telemedicine for the national healthcare system. In this paper, we present Tele-COVID which is a telemedicine application to treat COVID-19 patients from a distance. Tele-COVID is uniquely designed and implemented in Service-Oriented Architecture (SOA) to avoid the problem of interoperability, vendor lock-in, and data interchange. With the help of Tele-COVID, the treatment of patients at a distance is possible without the need for them to visit hospitals; in case of emergency, necessary services can also be provided.  相似文献   

13.
    
COVID-19 has been ravaging the world for a long time, and although its effects are currently the same as those of a cold or a fever, timely diagnosis of COVID-19 in the elderly and in patients with related illnesses is still a matter of great urgency. To address this challenge, we propose a model that combines the strengths of the Swin Transformer and ResNet34 architectures to efficiently diagnose COVID-19 in elderly and vulnerable patients. In this paper, we design a model that integrates Swin transformer and resnet34, which not only integrates the advantages of transformer and CNN but also achieves excellent performance in this image classification problem. Moreover, a pre-processing method is also proposed to increase the accuracy of the model to 99.08%. In this paper, experiments were conducted on Kaggle's publicly available three-classification and four-classification datasets, respectively, and on the three main evaluation metrics of Accuracy, Precision, and Recall, the first dataset obtained 98.81%, 99.49%, and 97.99%, while the second dataset obtained 88.82%, 88.92%, and 86.38%. These findings highlight the validity and potential of our proposed model for diagnosing the presence or absence of COVID-19 in elderly and vulnerable patients.  相似文献   

14.
目的分析、总结新型冠状病毒肺炎疫情可视化设计案例,为疫情数据可视化设计的不断完善提供参考。方法检索、分析国内外相关文献资料,对疫情期间各主要媒体所发布的各阶段疫情数据可视化作品进行收集、分析和总结。结果得出疫情可视化设计的用户分类、数据类型、特点、演化过程等信息。结论收集到疫情可视化设计方案针对大众关心的疫情信息作了形式多样的表达,并随着疫情发展不断调整改进。同时,需要提高设计方案的用户针对性,加强设计评价以提升可用性及用户体验。也需要完善人流、物流、信息流等数据的可视化设计,并且达到系统化、规范化、实时化。  相似文献   

15.
    
Universal platforms for biomolecular analysis using label-free sensing modalities can address important diagnostic challenges. Electrical field effect-sensors are an important class of devices that can enable point-of-care sensing by probing the charge in the biological entities. Use of crumpled graphene for this application is especially promising. It is previously reported that the limit of detection (LoD) on electrical field effect-based sensors using DNA molecules on the crumpled graphene FET (field-effect transistor) platform. Here, the crumpled graphene FET-based biosensing of important biomarkers including small molecules and proteins is reported. The performance of devices is systematically evaluated and optimized by studying the effect of the crumpling ratio on electrical double layer (EDL) formation and bandgap opening on the graphene. It is also shown that a small and electroneutral molecule dopamine can be captured by an aptamer and its conformation change induced electrical signal changes. Three kinds of proteins were captured with specific antibodies including interleukin-6 (IL-6) and two viral proteins. All tested biomarkers are detectable with the highest sensitivity reported on the electrical platform. Significantly, two COVID-19 related proteins, nucleocapsid (N-) and spike (S-) proteins antigens are successfully detected with extremely low LoDs. This electrical antigen tests can contribute to the challenge of rapid, point-of-care diagnostics.  相似文献   

16.
    
After one pandemic year of remote or hybrid instructional modes, universities struggled with plans for an in-person autumn (fall) semester in 2021. To help inform university reopening policies, we collected survey data on social contact patterns and developed an agent-based model to simulate the spread of severe acute respiratory syndrome coronavirus 2 in university settings. Considering a reproduction number of R0 = 3 and 70% immunization effectiveness, we estimated that at least 80% of the university population immunized through natural infection or vaccination is needed for safe university reopening with relaxed non-pharmaceutical interventions (NPIs). By contrast, at least 60% of the university population immunized through natural infection or vaccination is needed for safe university reopening when NPIs are adopted. Nevertheless, attention needs to be paid to large-gathering events that could lead to infection size spikes. At an immunization coverage of 70%, continuing NPIs, such as wearing masks, could lead to a 78.39% reduction in the maximum cumulative infections and a 67.59% reduction in the median cumulative infections. However, even though this reduction is very beneficial, there is still a possibility of non-negligible size outbreaks because the maximum cumulative infection size is equal to 1.61% of the population, which is substantial.  相似文献   

17.
    
A hybrid convolutional neural network (CNN)-based model is proposed in the article for accurate detection of COVID-19, pneumonia, and normal patients using chest X-ray images. The input images are first pre-processed to tackle problems associated with the formation of the dataset from different sources, image quality issues, and imbalances in the dataset. The literature suggests that several abnormalities can be found with limited medical image datasets by using transfer learning. Hence, various pre-trained CNN models: VGG-19, InceptionV3, MobileNetV2, and DenseNet are adopted in the present work. Finally, with the help of these models, four hybrid models: VID (VGG-19, Inception, and DenseNet), VMI(VGG-19, MobileNet, and Inception), VMD (VGG-19, MobileNet, and DenseNet), and IMD(Inception, MobileNet, and DenseNet) are proposed. The model outcome is also tested using five-fold cross-validation. The best-performing hybrid model is the VMD model with an overall testing accuracy of 97.3%. Thus, a new hybrid model architecture is presented in the work that combines three individual base CNN models in a parallel configuration to counterbalance the shortcomings of individual models. The experimentation result reveals that the proposed hybrid model outperforms most of the previously suggested models. This model can also be used in the identification of diseases, especially in rural areas where limited laboratory facilities are available.  相似文献   

18.
    
Before herd immunity against Coronavirus disease 2019 (COVID-19) is achieved by mass vaccination, science-based guidelines for non-pharmaceutical interventions are urgently needed to reopen megacities. This study integrated massive mobile phone tracking records, census data and building characteristics into a spatially explicit agent-based model to simulate COVID-19 spread among 11.2 million individuals living in Shenzhen City, China. After validation by local epidemiological observations, the model was used to assess the probability of COVID-19 resurgence if sporadic cases occurred in a fully reopened city. Combined scenarios of three critical non-pharmaceutical interventions (contact tracing, mask wearing and prompt testing) were assessed at various levels of public compliance. Our results show a greater than 50% chance of disease resurgence if the city reopened without contact tracing. However, tracing household contacts, in combination with mandatory mask use and prompt testing, could suppress the probability of resurgence under 5% within four weeks. If household contact tracing could be expanded to work/class group members, the COVID resurgence could be avoided if 80% of the population wear facemasks and 40% comply with prompt testing. Our assessment, including modelling for different scenarios, helps public health practitioners tailor interventions within Shenzhen City and other world megacities under a variety of suppression timelines, risk tolerance, healthcare capacity and public compliance.  相似文献   

19.
    
Face masks do not completely prevent transmission of respiratory infections, but masked individuals are likely to inhale fewer infectious particles. If smaller infectious doses tend to yield milder infections, yet ultimately induce similar levels of immunity, then masking could reduce the prevalence of severe disease even if the total number of infections is unaffected. It has been suggested that this effect of masking is analogous to the pre-vaccination practice of variolation for smallpox, whereby susceptible individuals were intentionally infected with small doses of live virus (and often acquired immunity without severe disease). We present a simple epidemiological model in which mask-induced variolation causes milder infections, potentially with lower transmission rate and/or different duration. We derive relationships between the effectiveness of mask-induced variolation and important epidemiological metrics (the basic reproduction number and initial epidemic growth rate, and the peak prevalence, attack rate and equilibrium prevalence of severe infections). We illustrate our results using parameter estimates for the original SARS-CoV-2 wild-type virus, as well as the Alpha, Delta and Omicron variants. Our results suggest that if variolation is a genuine side-effect of masking, then the importance of face masks as a tool for reducing healthcare burdens from COVID-19 may be under-appreciated.  相似文献   

20.
    
The time-dependent reproduction number, Rt, is a key metric used by epidemiologists to assess the current state of an outbreak of an infectious disease. This quantity is usually estimated using time-series observations on new infections combined with assumptions about the distribution of the serial interval of transmissions. Bayesian methods are often used with the new cases data smoothed using a simple, but to some extent arbitrary, moving average. This paper describes a new class of time-series models, estimated by classical statistical methods, for tracking and forecasting the growth rate of new cases and deaths. Very few assumptions are needed and those that are made can be tested. Estimates of Rt, together with their standard deviations, are obtained as a by-product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号