首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
COVID-19 has caused severe health complications and produced a substantial adverse economic impact around the world. Forecasting the trend of COVID-19 infections could help in executing policies to effectively reduce the number of new cases. In this study, we apply the decomposition and ensemble model to forecast COVID-19 confirmed cases, deaths, and recoveries in Pakistan for the upcoming month until the end of July. For the decomposition of data, the Ensemble Empirical Mode Decomposition (EEMD) technique is applied. EEMD decomposes the data into small components, called Intrinsic Mode Functions (IMFs). For individual IMFs modelling, we use the Autoregressive Integrated Moving Average (ARIMA) model. The data used in this study is obtained from the official website of Pakistan that is publicly available and designated for COVID-19 outbreak with daily updates. Our analyses reveal that the number of recoveries, new cases, and deaths are increasing in Pakistan exponentially. Based on the selected EEMD-ARIMA model, the new confirmed cases are expected to rise from 213,470 to 311,454 by 31 July 2020, which is an increase of almost 1.46 times with a 95% prediction interval of 246,529 to 376,379. The 95% prediction interval for recovery is 162,414 to 224,579, with an increase of almost two times in total from 100802 to 193495 by 31 July 2020. On the other hand, the deaths are expected to increase from 4395 to 6751, which is almost 1.54 times, with a 95% prediction interval of 5617 to 7885. Thus, the COVID-19 forecasting results of Pakistan are alarming for the next month until 31 July 2020. They also confirm that the EEMD-ARIMA model is useful for the short-term forecasting of COVID-19, and that it is capable of keeping track of the real COVID-19 data in nearly all scenarios. The decomposition and ensemble strategy can be useful to help decision-makers in developing short-term strategies about the current number of disease occurrences until an appropriate vaccine is developed.  相似文献   

2.
An age-structured SEIR model simulates the propagation of COVID-19 in the population of Northern Ireland. It is used to identify optimal timings of short-term lockdowns that enable long-term pandemic exit strategies by clearing the threshold for herd immunity or achieving time for vaccine development with minimal excess deaths.  相似文献   

3.
Sizeable quantities of 2009 pandemic influenza A/H1N1 (H1N1pdm) vaccine in the USA became available at the end of 2009 when the autumn wave of the epidemic was declining. At that point, risk factors for H1N1-related mortality for some of the high-risk groups, particularly adults with underlying health conditions, could be estimated. Although those high-risk groups are natural candidates for being in the top priority tier for vaccine allocation, another candidate group is school-aged children through their role as vectors for transmission affecting the whole community. In this paper, we investigate the question of prioritization for vaccine allocation in a declining epidemic between two groups—a group with a high risk of mortality versus a ‘core’ group with a relatively low risk of mortality but fuelling transmission in the community. We show that epidemic data can be used, under certain assumptions on future decline, seasonality and vaccine efficacy in different population groups, to give a criterion when initial prioritization of a population group with a sufficiently high risk of epidemic-associated mortality is advisable over the policy of prioritizing the core group.  相似文献   

4.
《工程(英文)》2021,7(7):948-957
The coronavirus disease 2019 (COVID-19) pandemic is a global crisis, and medical systems in many countries are overwhelmed with supply shortages and increasing demands to treat patients due to the surge in cases and severe illnesses. This study aimed to assess COVID-19-related essential clinical resource demands in China, based on different scenarios involving COVID-19 spreads and interventions. We used a susceptible–exposed–infectious–hospitalized/isolated–removed (SEIHR) transmission dynamics model to estimate the number of COVID-19 infections and hospitalizations with corresponding essential healthcare resources needed. We found that, under strict non-pharmaceutical interventions (NPIs) or mass vaccination of the population, China would be able to contain community transmission and local outbreaks rapidly. However, under scenarios involving a low intensity of implemented NPIs and a small proportion of the population vaccinated, the use of a peacetime–wartime transition model would be needed for medical source stockpiles and preparations to ensure a normal functioning healthcare system. The implementation of COVID-19 vaccines and NPIs in different periods can influence the transmission of COVID-19 and subsequently affect the demand for clinical diagnosis and treatment. An increased proportion of asymptomatic infections in simulations will not reduce the demand for medical resources; however, attention must be paid to the increasing difficulty in containing COVID-19 transmission due to asymptomatic cases. This study provides evidence for emergency preparations and the adjustment of prevention and control strategies during the COVID-19 pandemic. It also provides guidance for essential healthcare investment and resource allocation.  相似文献   

5.
The two main approaches that countries are using to ease the strain on healthcare infrastructure is building temporary hospitals that are specialized in treating COVID-19 patients and promoting preventive measures. As such, the selection of the optimal location for a temporary hospital and the calculation of the prioritization of preventive measures are two of the most critical decisions during the pandemic, especially in densely populated areas where the risk of transmission of the virus is highest. If the location selection process or the prioritization of measures is poor, healthcare workers and patients can be harmed, and unnecessary costs may come into play. In this study, a decision support framework using a fuzzy analytic hierarchy process (FAHP) and a weighted aggregated sum product assessment model are proposed for selecting the location of a temporary hospital, and a FAHP model is proposed for calculating the prioritization of preventive measures against COVID-19. A case study is performed for Ho Chi Minh City using the proposed decision-making framework. The contribution of this work is to propose a multiple criteria decision-making model in a fuzzy environment for ranking potential locations for building temporary hospitals during the COVID-19 pandemic. The results of the study can be used to assist decision-makers, such as government authorities and infectious disease experts, in dealing with the current pandemic as well as other diseases in the future. With the entire world facing the global pandemic of COVID-19, many scientists have applied research achievements in practice to help decision-makers make accurate decisions to prevent the pandemic. As the number of cases increases exponentially, it is crucial that government authorities and infectious disease experts make optimal decisions while considering multiple quantitative and qualitative criteria. As such, the proposed approach can also be applied to support complex decision-making processes in a fuzzy environment in different countries.  相似文献   

6.
This paper examines the effects of online campaigns celebrating frontline workers on COVID-19 outcomes regarding new cases, deaths, and vaccinations, using the United Kingdom as a case study. We implement text and sentiment analysis on Twitter data and feed the result into random regression forests and cointegration analysis. Our combined machine learning and econometric approach shows very weak effects of both the volume and the sentiment of Twitter discussions on new cases, deaths, and vaccinations. On the other hand, established relationships (such as between stringency measures and cases/deaths and between vaccinations and deaths) are confirmed. On the contrary, we find adverse lagged effects from negative sentiment to vaccinations and from new cases to negative sentiment posts. As we assess the knowledge acquired from the COVID-19 crisis, our findings can be used by policy makers, particularly in public health, and prepare for the next pandemic.  相似文献   

7.
To function properly, assembly lines require the presence of every worker. When a worker is absent, management must scramble quickly to find a replacement. Cross-training workers to perform multiple tasks mitigates this difficulty. However, since cross-training is costly and limited by learning capacity and can confound the search for quality problems, it should be used judiciously. The present paper proposes a training strategy called chaining in which workers are trained to perform a second task, and the assignments of task types to workers are linked in a chain. It is shown that chaining is a practical and effective strategy for prioritizing cross-training to compensate for absenteeism on assembly lines.  相似文献   

8.
Recently, two coronavirus disease 2019 (COVID-19) vaccine products have been authorized in Canada. It is of crucial importance to model an integrated/combined package of non-pharmaceutical (physical/social distancing) and pharmaceutical (immunization) public health control measures. A modified epidemiological, compartmental SIR model was used and fit to the cumulative COVID-19 case data for the province of Ontario, Canada, from 8 September 2020 to 8 December 2020. Different vaccine roll-out strategies were simulated until 75% of the population was vaccinated, including a no-vaccination scenario. We compete these vaccination strategies with relaxation of non-pharmaceutical interventions. Non-pharmaceutical interventions were supposed to remain enforced and began to be relaxed on 31 January, 31 March or 1 May 2021. Based on projections from the data and long-term extrapolation of scenarios, relaxing the public health measures implemented by re-opening too early would cause any benefits of vaccination to be lost by increasing case numbers, increasing the effective reproduction number above 1 and thus increasing the risk of localized outbreaks. If relaxation is, instead, delayed and 75% of the Ontarian population gets vaccinated by the end of the year, re-opening can occur with very little risk. Relaxing non-pharmaceutical interventions by re-opening and vaccine deployment is a careful balancing act. Our combination of model projections from data and simulation of different strategies and scenarios, can equip local public health decision- and policy-makers with projections concerning the COVID-19 epidemiological trend, helping them in the decision-making process.  相似文献   

9.
The World Health Organization declared COVID-19 a pandemic on March 11, 2020 stating that it is a worldwide danger and requires imminent preventive strategies to minimise the loss of lives. COVID-19 has now affected millions across 211 countries in the world and the numbers continue to rise. The information discharged by the WHO till June 15, 2020 reports 8,063,990 cases of COVID-19. As the world thinks about the lethal malady for which there is yet no immunization or a predefined course of drug, the nations are relentlessly working at the most ideal preventive systems to contain the infection. The Kingdom of Saudi Arabia (KSA) is additionally combating with the COVID-19 danger as the cases announced till June 15, 2020 reached the count of 132,048 with 1,011 deaths. According to the report released by the KSA on June 14, 2020, more than 4,000 cases of COVID-19 pandemic had been registered in the country. Tending to the impending requirement for successful preventive instruments to stem the fatalities caused by the disease, our examination expects to assess the severity of COVID-19 pandemic in cities of KSA. In addition, computational model for evaluating the severity of COVID-19 with the perspective of social influence factor is necessary for controlling the disease. Furthermore, a quantitative evaluation of severity associated with specific regions and cities of KSA would be a more effective reference for the healthcare sector in Saudi Arabia. Further, this paper has taken the Fuzzy Analytic Hierarchy Process (AHP) technique for quantitatively assessing the severity of COVID-19 pandemic in cities of KSA. The discoveries and the proposed structure would be a practical, expeditious and exceptionally precise evaluation system for assessing the severity of the pandemic in the cities of KSA. Hence these urban zones clearly emerge as the COVID-19 hotspots. The cities require suggestive measures of health organizations that must be introduced on a war footing basis to counter the pandemic. The analysis tabulated in our study will assist in mapping the rules and building a systematic structure that is immediate need in the cities with high severity levels due to the pandemic.  相似文献   

10.
The Delta variant is a major SARS-CoV-2 variant of concern first identified in India. To better understand COVID-19 pandemic dynamics and Delta, we use multiple datasets and model-inference to reconstruct COVID-19 pandemic dynamics in India during March 2020–June 2021. We further use the large discrepancy in one- and two-dose vaccination coverage in India (53% versus 23% by end of October 2021) to examine the impact of vaccination and whether prior non-Delta infection can boost vaccine effectiveness (VE). We estimate that Delta escaped immunity in 34.6% (95% CI: 0–64.2%) of individuals with prior wild-type infection and was 57.0% (95% CI: 37.9–75.6%) more infectious than wild-type SARS-CoV-2. Models assuming higher VE among non-Delta infection recoverees, particularly after the first dose, generated more accurate predictions than those assuming no such increases (best-performing VE setting: 90/95% versus 30/67% baseline for the first/second dose). Counterfactual modelling indicates that high vaccination coverage for first vaccine dose in India combined with the boosting of VE among recoverees averted around 60% of infections during July–mid-October 2021. These findings provide support to prioritizing first-dose vaccination in regions with high underlying infection rates, given continued vaccine shortages and new variant emergence.  相似文献   

11.
Coronavirus disease 2019 (COVID-19), caused by the highly contagious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become the worst pandemic disease of the current millennium. To address this crisis, therapeutic nanoparticles, including inorganic nanoparticles, lipid nanoparticles, polymeric nanoparticles, virus-like nanoparticles, and cell membrane-coated nanoparticles, have all offered compelling antiviral strategies. This article reviews these strategies in three categories: (1) nanoparticle-enabled detection of SARS-CoV-2, (2) nanoparticle-based treatment for COVID-19, and (3) nanoparticle vaccines against SARS-CoV-2. We discuss how nanoparticles are tailor-made to biointerface with the host and the virus in each category. For each nanoparticle design, we highlight its structure–function relationship that enables effective antiviral activity. Overall, nanoparticles bring numerous new opportunities to improve our response to the current COVID-19 pandemic and enhance our preparedness for future viral outbreaks.  相似文献   

12.
A prioritization methodology was developed to identify key "hot spot" sectors that are vulnerable to adverse environmental impacts from trade liberalization. The methodology relies on internationally approved analytical techniques and indicators relevant to the trade and environment issue. Key outputs of this research include the identification of appropriate economic and environmental indicators, an information compilation strategy, and a step-wise procedure to perform the prioritization process. The methodology presented may reduce time and expenses previously incurred in identifying environmental hot spots. It also may assist in prioritizing actions to mitigate negative consequences of trade liberalization in specific sectors. Electronic Publication  相似文献   

13.
Vaccination is the most effective way to prevent coronavirus disease 2019(COVID-19).Vaccine development approaches consist of viral vector vaccines,DNA vaccine,...  相似文献   

14.
COVID-19 has become one of the critical health issues globally, which surfaced first in latter part of the year 2019. It is the topmost concern for many nations’ governments as the contagious virus started mushrooming over adjacent regions of infected areas. In 1980, a vaccine called Bacillus Calmette-Guérin (BCG) was introduced for preventing tuberculosis and lung cancer. Countries that have made the BCG vaccine mandatory have witnessed a lesser COVID-19 fatality rate than the countries that have not made it compulsory. This paper’s initial research shows that the countries with a long-term compulsory BCG vaccination system are less affected by COVID-19 than those without a BCG vaccination system. This paper discusses analytical data patterns for medical applications regarding COVID-19 impact on countries with mandatory BCG status on fatality rates. The paper has tackled numerous analytical challenges to realize the full potential of heterogeneous data. An analogy is drawn to demonstrate how other factors can affect fatality and infection rates other than BCG vaccination only, such as age groups affected, other diseases, and stringency index. The data of Spain, Portugal, and Germany have been taken for a case study of BCG impact analysis.  相似文献   

15.
The swift development of SARS-CoV-2 vaccines has been met with worldwide commendation. However, in the context of an ongoing pandemic there is an interplay between infection and vaccination. While infection can grow exponentially, vaccination rates are generally limited by supply and logistics. With the first SARS-CoV-2 vaccines receiving medical approval requiring two doses, there has been scrutiny on the spacing between doses; an elongated period between doses allows more of the population to receive a first vaccine dose in the short-term generating wide-spread partial immunity. Focusing on data from England, we investigated prioritization of a one dose or two dose vaccination schedule given a fixed number of vaccine doses and with respect to a measure of maximizing averted deaths. We optimized outcomes for two different estimates of population size and relative risk of mortality for at-risk groups within the Phase 1 vaccine priority order. Vaccines offering relatively high protection from the first dose favour strategies that prioritize giving more people one dose, although with increasing vaccine supply eventually those eligible and accepting vaccination will receive two doses. While optimal dose timing can substantially reduce the overall mortality risk, there needs to be careful consideration of the logistics of vaccine delivery.  相似文献   

16.
COVID-19 turned out to be an infectious and life-threatening viral disease, and its swift and overwhelming spread has become one of the greatest challenges for the world. As yet, no satisfactory vaccine or medication has been developed that could guarantee its mitigation, though several efforts and trials are underway. Countries around the globe are striving to overcome the COVID-19 spread and while they are finding out ways for early detection and timely treatment. In this regard, healthcare experts, researchers and scientists have delved into the investigation of existing as well as new technologies. The situation demands development of a clinical decision support system to equip the medical staff ways to timely detect this disease. The state-of-the-art research in Artificial intelligence (AI), Machine learning (ML) and cloud computing have encouraged healthcare experts to find effective detection schemes. This study aims to provide a comprehensive review of the role of AI & ML in investigating prediction techniques for the COVID-19. A mathematical model has been formulated to analyze and detect its potential threat. The proposed model is a cloud-based smart detection algorithm using support vector machine (CSDC-SVM) with cross-fold validation testing. The experimental results have achieved an accuracy of 98.4% with 15-fold cross-validation strategy. The comparison with similar state-of-the-art methods reveals that the proposed CSDC-SVM model possesses better accuracy and efficiency.  相似文献   

17.
Coronavirus (COVID-19) infection was initially acknowledged as a global pandemic in Wuhan in China. World Health Organization (WHO) stated that the COVID-19 is an epidemic that causes a 3.4% death rate. Chest X-Ray (CXR) and Computerized Tomography (CT) screening of infected persons are essential in diagnosis applications. There are numerous ways to identify positive COVID-19 cases. One of the fundamental ways is radiology imaging through CXR, or CT images. The comparison of CT and CXR scans revealed that CT scans are more effective in the diagnosis process due to their high quality. Hence, automated classification techniques are required to facilitate the diagnosis process. Deep Learning (DL) is an effective tool that can be utilized for detection and classification this type of medical images. The deep Convolutional Neural Networks (CNNs) can learn and extract essential features from different medical image datasets. In this paper, a CNN architecture for automated COVID-19 detection from CXR and CT images is offered. Three activation functions as well as three optimizers are tested and compared for this task. The proposed architecture is built from scratch and the COVID-19 image datasets are directly fed to train it. The performance is tested and investigated on the CT and CXR datasets. Three activation functions: Tanh, Sigmoid, and ReLU are compared using a constant learning rate and different batch sizes. Different optimizers are studied with different batch sizes and a constant learning rate. Finally, a comparison between different combinations of activation functions and optimizers is presented, and the optimal configuration is determined. Hence, the main objective is to improve the detection accuracy of COVID-19 from CXR and CT images using DL by employing CNNs to classify medical COVID-19 images in an early stage. The proposed model achieves a classification accuracy of 91.67% on CXR image dataset, and a classification accuracy of 100% on CT dataset with training times of 58 min and 46 min on CXR and CT datasets, respectively. The best results are obtained using the ReLU activation function combined with the SGDM optimizer at a learning rate of 10−5 and a minibatch size of 16.  相似文献   

18.
《工程(英文)》2021,7(7):936-947
Coronavirus disease 2019 (COVID-19) deaths per million population in the countries of the West had often exceeded those in the countries of the East by factor of 100 by May 2021. In this paper, we refer to the West as represented by the United States plus the five most populous countries of Western Europe (France, Germany, Italy, Spain, and the United Kingdom), and the East as the 15 countries in East Asia and Oceania that are members of the Regional Comprehensive Economic Partnership, RCEP (Australia, Brunei, Cambodia, China, Indonesia, Japan, the Republic of Korea, Laos, Malaysia, Myanmar, New Zealand, Philippines, Singapore, Thailand, and Vietnam). This paper argues that currently available information points to the factors most responsible for the East–West divide. Warnings by early January 2020 about an atypical viral pneumonia in Wuhan, China, prompted rapid responses in many jurisdictions in East Asia. Publication of the virus’s genome on 10 January 2020 provided essential information for making diagnostic tests and launching vaccine development. China’s lockdown of Wuhan on 23 January 2020 provided a final, decisive signal of the danger of the new disease. By late March 2020, China had fully controlled its epidemic, and many other RCEP countries had taken early and decisive measures, including restrictions on travel, that aborted serious outcomes. Inaction during the critical month of February 2020 in the United States and most other Western countries allowed the disease to take hold and spread. In both the East and the West, stringent population-wide non-pharmaceutical interventions were widely implemented at great cost to societies, economies, and school systems. Without these measures, the outcomes could have been even worse. Most countries in the East also implemented tightly focused policies to isolate infectious individuals. Even today, most countries in the West allow infectious individuals to mingle with their families, coworkers, and communities. Much of the East–West divide plausibly results from failure in the West to implement the basic public health policies of early action and the isolation of infectious individuals. Widespread immunization in some RCEP and high-income countries will soon attenuate their outbreaks, while the slow rollout of vaccines in lower income countries is replacing the East–West divide in outcomes with a North–South one. The South is thus replacing the West as the breeding ground for more dangerous variants as exemplified by the highly contagious Delta variant, which may undermine hitherto successful control strategies in many countries.  相似文献   

19.
Due to its high lethality among older people, the safety of nursing homes has been of central importance during the COVID-19 pandemic. With test procedures and vaccines becoming available at scale, nursing homes might relax prohibitory measures while controlling the spread of infections. By control we mean that each index case infects less than one other person on average. Here, we develop an agent-based epidemiological model for the spread of SARS-CoV-2 calibrated to Austrian nursing homes to identify optimal prevention strategies. We find that the effectiveness of mitigation testing depends critically on test turnover time (time until test result), the detection threshold of tests and mitigation testing frequencies. Under realistic conditions and in absence of vaccinations, we find that mitigation testing of employees only might be sufficient to control outbreaks if tests have low turnover times and detection thresholds. If vaccines that are 60% effective against high viral load and transmission are available, control is achieved if 80% or more of the residents are vaccinated, even without mitigation testing and if residents are allowed to have visitors. Since these results strongly depend on vaccine efficacy against infection, retention of testing infrastructures, regular testing and sequencing of virus genomes is advised to enable early identification of new variants of concern.  相似文献   

20.
《工程(英文)》2020,6(10):1099-1107
The recent coronavirus disease 2019 (COVID-19) pandemic outbreak has caused a serious global health emergency. Supporting evidence shows that COVID-19 shares a genomic similarity with other coronaviruses, such as severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), and that the pathogenesis and treatment strategies that were applied 17 years ago in combating SARS-CoV and other viral infections could be taken as references in today’s antiviral battle. According to the clinical pathological features of COVID-19 patients, patients can suffer from five steps of progression, starting with severe viral infection and suppression of the immune system and eventually progressing to cytokine storm, multi-organ damage, and lung fibrosis, which is the cause of mortality. Therefore, early prevention of disease progression is important. However, no specific effective drugs and vaccination are currently available, and the World Health Organization is urging the development of novel prevention and treatment strategies. Traditional Chinese medicine could be used as an alternative treatment option or in combination with Western medicine to treat COVID-19, due to its basis on historical experience and holistic pharmacological action. Here, we summarize the potential uses and therapeutic mechanisms of Chinese herbal formulas (CHFs) from the reported literature, along with patent drugs that have been recommended by institutions at the national and provincial levels in China, in order to verify their scientific foundations for treating COVID-19. In perspective, more basic and clinical studies with multiple high-tech and translational technologies are suggested to further confirm the therapeutic efficacies of CHFs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号