首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Malachite is one of the main minerals used for the industrial enrichment and recovery of copper oxide resources, and copper ions are unavoidable metal ions in the flotation pulp. The microflotation, contact angle, and adsorption experiments indicated that pretreatment with an appropriate concentration of copper ions could improve the malachite recovery, and the addition of excess copper ions reduced the hydrophobicity of the malachite surface. The results of zeta potential tests indicated that sodium sulfide and butyl xanthate were also adsorbed on the surface of malachite pretreated with copper ions. X-ray photoelectron spectroscopy (XPS) results indicated that —Cu—O and —Cu—OH bonds were formed on the surface of the samples. After pretreatment with an appropriate concentration of copper ions, the number of —OH groups on the mineral surface decreased, whereas the number of Cu—S groups on the mineral surface increased, which was conducive to the sulfidization of malachite. After adding a high concentration of copper ions, the —OH groups on the mineral surface increased, whereas the number of Cu—S groups decreased, which had an adverse effect on the sulfidization flotation of malachite. Time-of-flight secondary ion mass spectrometry showed that pretreatment with copper ions resulted in a thicker sulfidization layer on the mineral surface.  相似文献   

2.
Copper oxide minerals are important copper resources, which include malachite, azurite, chrysocolla,cuprite, etc. Flotation is the most widely used method for the enrichment of copper oxide minerals in the mineral processing industry. In this paper, the surface properties of copper oxide minerals and their effects on the mineral flotation behavior are systematically summarized. The flotation methods of copper oxide minerals and the interaction mechanism with reagents are reviewed in detail. Flot...  相似文献   

3.
In this work, the growth of copper sulfide crystal onto azurite surfaces during sulfurization and its response to flotation are investigated. Filed emission scanning electron microscopy-energy dispersive X-ray spectroscopy (FESEM) and X-ray diffraction (XRD) studies confirmed that the sulfurization of azurite is not limited to the mineral surface, but rather penetrates into the bulk to form covellite crystal (syn-CuS), creating favorable conditions for the stable adsorption of xanthate and greatly promoting the azurite flotation. Additionally, as demonstrated by X-ray photoelectron spectroscopy (XPS) and time of flight secondary ion mass spectrometry (TOF-SIMS) analyses, a redox reaction occurred during this process, and Cu(Ⅱ) onto the mineral surface was reduced to Cu(I). Correspondingly, reduced S2- was oxidized to (S2)2-, (Sn)2-, and even to deeper oxidation state S0, (SxOy)n- and SO42-. Excess sodium sulfide strengthens copper sulfide to form onto the azurite surface, and provides enough raw material for crystal copper sulfide to grow, resulting in the formation of “flake-like” covellite with a better crystallinity. However, the floatability of azurite decreased dramatically under this condition, because the generated massive colloidal copper sulfide in flotation pulp deteriorates the flotation environment, resulting in a decreased effective adsorption of collector onto azurite surfaces.  相似文献   

4.
The surface species transformation of oxidized carrollite processing with NaHS and KBX was investigated. Flotation and contact angle tests indicate that the combination of NaHS and KBX takes a better flotation performance than adding NaHS or KBX alone. Thermodynamic analysis, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) results confirm the stronger chemisorption of KBX occurs on the oxidized carrollite surface with NaHS, which is beneficial to remove the cobalt oxides, thus contributing to the superior floatability. Interestingly, less elemental sulfur was observed on the carrollite surface as the interaction of NaHS and KBX than adding NaHS alone. It suggests that elemental sulfur is not the main contributor to the restored floatability of oxidized carrollite through sulfidisation. This study provided a new perspective to correlate the surface species with xanthate adsorption and oxidized carrollite flotation through determining the various intermediate products.  相似文献   

5.
Bioflotation of pyrite with bacteria Thiobacillus ferrooxidans in the presence or absence of potassium ethyl xanthate was studied on a pure pyrite through microflotation and electrophoretic light scattering measurements. The experimental results showed that in the absence of xanthate, pyrite flotation is slightly enhanced by Thiobacillusferrooxidans. However, with xanthate as a collector, pyrite flotation is strongly depressed after being exposed to the bacteria. The longer is the time when the pyrite is exposed to the bacteria, the stronger the depression is. The mechanism of the depression might be due to the formation of the biofilms of Thiobacillus ferrooxidans on pyrite surfaces, preventing the adsorption of xanthate on pyrite surfaces in the form of dixanthogen or xanthate ions.  相似文献   

6.
Mechanism of separating pyrite and dolomite by flotation   总被引:1,自引:0,他引:1  
To study the mechanism of separating pyrite and dolomite by flotation, the acting mechanisms of WHL depressor and both the minerals were studied by means of thermogravimetric and differential thermal analysis (TG-DTA), Fourier transform infrareddiffuse reflection spectroscopy (PTIR-DRS), and X-ray photoelectron spectroscopy (XPS). The results indicated that WHL formed metal salts with metal ions dissolved in water from dolomite and pyrite, which then deposited on their surfaces. Both of the minerals could be depressed by WHL. In the process of flotation, sulfur was created besides the WIlL being absorbed on the surface of the sulfur concentrate, and its recovery rate was slightly affected.  相似文献   

7.
In this study, the role of(NH4)2SO4 during the sulfurization of azurite and its response to flotation were investigated. The flotation results showed that adding(NH4)2SO4 prior to sulfurization decreased the formation of colloid in flotation pulp, and the floatability of the suppressed azurite caused by excess sodium sulfide was restored. After adding(NH4)2SO4 prior to sulfurization, the formation ...  相似文献   

8.
This paper investigated the effects of potassium ferrate(PF) on the flotation performances of chalcopyrite and galena. The flotation results showed that PF obviously depressed galena, but had little effects on the floatability of chalcopyrite within p H range of 4.0–12.0. Zeta potential tests showed that the addition of PF induced the formation of more amounts of hydrophilic species on the surface of galena under an alkaline environment. Industrial grade O-isopropyl-N-ethyl thionocarbamate(IPETC...  相似文献   

9.
The converter slag from a smeltery in Daye contains 2.01% copper. The floatability of copper has a significant influence on the flotation of converter slag. Flotation tests, contact angle tests and FTIR were conducted to assess the influences of pH and different flotation concentrators on its hydrophobic process, mechanism and flotation. The results show that since chemisorptions are formed on the surface, hydrophobicity of copper is highly enhanced by xanthate, butylamine dithiophosphate and Z-200. The hydrophobic-surface of copper becomes worse with low recovery in strong acid and alkali situation. When pH value is 10, butylamine dithiophosphate and butyl xanthate are used as the mixed-collector, the grade of copper is 40.01% and that of tailings is 0.37%.  相似文献   

10.
The electron structure of FeS2 surface (100) was computed by DFT (density function theory) and the process of electron transfer in sulfide flotation was simulated through ab-initio calculation. The results show that the interaction between xanthate and FeS2 is controlled by the energy of valence band. The products and degree of the reaction depend on the density of state of valence band and concentration of positive hole in valence band. Interaction between xanthate and pyrite can be changed by modifying the election structure of the surface of pyrite. Xanthate is adsorbed on the surface of intrinsic pyrite. But the amount of xanthate adsorbed on the surface of the pyrite with sulfur vacancy is more than that on the surface of the intrinsic pyrite due to the higher electron and vacancy density. Xanthate is not adsorbed on the surface of pyrite with Fe vacancy because of its high Fermi energy.  相似文献   

11.
In this study, chalcopyrite was oxidized in hydrogen peroxide(H2O2) solutions of different concentrations to simulate different degrees of oxidation in real ores, and the effects of H2O2 treatment on chalcopyrite surface properties and flotation performance were investigated by surface analysis techniques and floatation experiments, which implied the reason for the poor grade and recovery of oxidized chalcopyrite concentrate in the production process o...  相似文献   

12.
This paper researched the enhanced flotation separation performance of ilmenite and titanaugite using the mixed collector benzhydroxamic acid/dodecylamine(BHA/DDA). The interface assembly mechanism was mainly investigated through in situ attenuated total reflectance Fourier transform infrared(ATRFTIR) spectroscopy combined with the two-dimensional correlation spectroscopy(2 D-COS) and X-ray photoelectron spectroscopy(XPS). It has been found that BHA/DDA mixed collectors successfully separate ilmenite from titanaugite at a molar ratio of 8:1. Zeta potential experiments suggested that, in the presence of mixed collector system, the BHA-DDA complex adsorbed on the ilmenite surface via the chemically adsorbed BHA and the electrostatically adsorbed DDA, however, the complex adsorbed on the surface of titanaugite unstably. According to in situ ATR-FTIR combined with 2 D-COS and XPS results,the interface assembly mechanism of BHA/DDA is summarized as: the function group of BHA molecules first binds to the metal sites on minerals to form bidentate ligand, then DDA co-adsorbed with BHA on the surface of minerals through hydrogen bonding. DDA may change the adsorption modes of some BHA on the ilmenite surface from four-membered ring to five-membered ring, while the modes on the titanaugite surface is true opposite. Finally, recommended adsorption configurations of the BHA/DDA complex on the two mineral surfaces are proposed.  相似文献   

13.
In order to selectively separate chalcopyrite from pyrite, the effect of organic depressant lignosulfonate calcium (LSC) on the flotation separation of chalcopyrite from pyrite was investigated by flotation tests. The depression mechanism was studied by Fourier-transform-infrared (FTIR) analysis. The flotation tests of single mineral show that LSC can depress the flotation of pyrite in a certain pH range, but it has little effect on chalcopyrite flotation. Flotation separation of a mixture of chalcopyrite and pyrite can be completed to obtain a copper concentrate grade up to 24.73% with a recovery of 80.36%. IR analysis shows that LSC and butyl xanthate compete in absorption on pyrite surface, and there exists an LSC characteristic peak on pyrite surface. There is little adsorption of LSC on chalcopyrite.  相似文献   

14.
Here, the influence of grinding media with different shapes on the flotation performance of spodumene and its potential mechanism from microscale insights was investigated using a single mineral flotation experiment, X-ray diffraction(XRD) test, scanning electron microscopy combined with energy dispersive spectrometry(SEM-EDS), atomic force microscope(AFM) and X-ray photoelectron spectroscopy(XPS).The flotation data indicated that under anionic/cationic(sodium oleate(Na OL)/DDA) collectors syste...  相似文献   

15.
Depressing effect of hydroxamic polyacrylamide on pyrite   总被引:1,自引:0,他引:1  
The performance of hydroxamic polyacrylamide(HPAM) in mineral flotation was tested on the samples of calcite, diaspore and pyrite. It is found that HPAM expresses intensive depression on pyrite and can be used as effective depressants for pyrite. The depression mechanism of HPAM to pyrite was investigated by the determination of contact angle, zeta potential, adsorptive capacity for collectors and infrared spectrum. A lower contact angle,more negative zeta potential, less xanthate adsorptive capacity, and the formation of chemical bonding were determined, which reveals that the strong chemical interactions exist between HPAM and pyrite surface. The group electronegativity of HPAM was calculated to explain the differences of interaction between reagent and minerals.  相似文献   

16.
Chlorite, as the most representative gangue mineral associated with specularite, of which the separation of these two minerals is difficult. This paper investigated the depression effect of taurine on specularite/chlorite separation via flotation experiments, adsorption tests, contact angle measurements, Zeta potential detection, FT-IR measurements, and XPS analyses. The results of single mineral flotation indicated that chlorite could be depressed selectively by taurine with the recovery of les...  相似文献   

17.
Effects of collectors(butyl xanthate(BX), O-isopropyl-N-sulfur ethyl carbamate(Z-200) and emulsified kerosene), dereagent(sodium sulfide) and depressant thioglycollic acid(TGA) on the flotation of chalcocite and molybdenite were investigated through flotation. The first principle theory was adopted to understand the difference of their surfaces and reaction between minerals and reagents. Results of flotation tests revealed that selectivity of emulsified kerosene is the best of three collectors in separation of chalcocite and molybdenite, though the others also display excellent collecting properties. Sodium sulfide can effectively remove collectors adsorbed on chalcocite surface, and TGA is an effective depressant of chalcocite at pH 8-9. Through first principle study, molybdenite displays relatively stronger covalence property while bonding interaction between copper atoms in chalcocite enhanced its ionicity. Bonding interaction is weaker in reaction of TGA and molybdenite, so it shows higher hydrophobicity and better flotability. Therefore, TGA is an effective inhibitor in the separation.  相似文献   

18.
Potential control flotation of galena in strong alkaline media   总被引:5,自引:4,他引:5  
The electrochemical oxidation of galena in collectorless and collector flotation systems, particularly in strong alkaline media, was studied. The results show that, with pH value higher than 12.5 and potentials below 0.17 V, the oxidation products of galena are elemental sulfur and HPbO2^- . Elemental sulfur was present on the mineral surface in excess of oxidized lead species due to dissolution of HPbO2^- , which is beneficial to the flotation of galena. Under the same conditions, sphalerite and pyrite were depressed as a result of significant surface oxidation. Diethyldithioearbamate (DDTC) was found to be the most suitable collector for galena flotation in strongly alkaline media. The very potential produced hydrophobic PbD2-the surface reaction produet of DDTC with galena, is 0 to 0.2 V. Meantime DDTC can depress the surface over-oxidation of galena.Investigations also indicate that, in the range of - 0.9 V to 0.6 V, hydrophobic PbD2 can be firmly adsorbed on galena.  相似文献   

19.
The effect of dolomite with different particle size fractions on hematite flotation was studied using sodium oleate as collector at p H of about 9. The effect mechanism of dolomite on hematite flotation was investigated by means of solution chemistry, ultraviolet spectrophotometry(UV), inductively coupled plasma atomic emission spectrometry(ICP-AES) and X-ray photoelectron spectroscopy(XPS). It is observed that dolomite with different size fractions has depressing effect on hematite flotation using sodium oleate as collector, and dolomite could be the "mineral depressant" of hematite using sodium oleate as collector. The reasons for that are concerned with sodium oleate consumption and the adsorption onto hematite of dissolved species of dolomite.  相似文献   

20.
The meso-macroporous Fe-doped Cu O was prepared by a simple hydrothermal method combined with post-annealing. The samples were characterized by X-ray powder diffraction(XRD), scanning electron microscopy(SEM), Brunauer-Emmett-Teller N2 adsorption-desorption analyses and UV-vis diffuses reflectance spectroscopy. The Fe-doped Cu O sample shows higher adsorption capacity and photocatalytic activity for xanthate degradation than pure Cu O under visible light irradiation. In addition, the adsorption process is found to fit Langmuir isotherms and pseudo-second-order kinetics. The the first order kinetic Langmuir Hinshelwood model was used to study the reaction kinetics of photocatalytic degradation, and the apparent rate constant( k) was calculated. The value of k for Fe-doped Cu O is 1.5 times that of pure Cu O. The higher photocatalytic activity of Fe-doped Cu O is attributed to higher specific surface area together with stronger visible light absorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号