首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
基于电池的戴维宁(Thevenin)模型,设计了多模型自适应卡尔曼滤波器,并将多模型自适应卡尔曼滤波器应用于电动汽车电池荷电状态(state-of-charge,SOC)估计。由于老化电池是未知系统,利用传统的单一模型卡尔曼滤波器估计老化电池SOC时,因模型不准确而使估计误差增大。与单一模型滤波估计相比,多模型滤波估计融合了电池的各种老化信息,适合于未知系统的状态估计,从而提高了SOC的估计精度,并通过实验证明了上述结论的正确性。利用多模型自适应卡尔曼滤波器估计电池SOC,老化电池的模型与权值最大的单一模型较接近,根据单一模型权值可以近似估计出老化电池的健康状态(state of health,SOH),并通过电池容量测量,证明了SOH估计的正确性。  相似文献   

2.
基于锂电池荷电状态(SOC)和健康状态(SOH)的耦合关系,设计了SOC-SOH联合估计系统。首先,构建锂电池等效电路模型和自适应扩展卡尔曼滤波(AEKF)算法,进行锂电池SOC估计;其次,建立锂电池分数阶模型,设计模糊控制器辨识分数阶模型参数,基于分数阶模型参数和电池充电工况确立健康因子,引入麻雀搜索算法(SSA)改进反向传播神经网络(BPNN),进行锂电池SOH估计;然后,集成SOC与SOH估计方法,设计联合估计系统;最后,设计锂电池老化实验、动态应力测试(DST)和US06动态实验方案,对比分析不同工况下不同算法的SOC-SOH联合估计效果。结果表明,基于提出的SOC-SOH联合估计方法,估计误差小于1%,具有良好的估计特性。  相似文献   

3.
高昕  韩嵩 《电源技术》2021,45(9):1140-1143,1208
锂离子电池荷电状态(SOC)和健康状态(SOH)的精确估计对电动汽车稳定运行十分重要.以精确估计电池SOC和SOH为目标,提出了一种基于分数阶模型的协同估计算法.建立基于二阶RC电路模型的分数阶电池模型,采用自适应遗传算法(AGA)辨识模型参数,利用分数阶扩展卡尔曼滤波(FOEKF)算法估计SOC,并结合自适应无迹卡尔曼滤波(AUKF)算法估计SOH,迭代更新内阻与SOC进而实现SOC与SOH精确的协同估计.在城市道路循环工况(UDDS)下使用Matlab工具验证和对比了算法精度,平均误差均控制在2%以内.结果表明,该协同估计算法能够精确估计电池SOC和SOH,为电池状态估计提供了一种方法.  相似文献   

4.
为了更好地优化电池的能量管理,提高电池的利用效率,加强电池的安全性能,有必要对锂离子电池的荷电状态(SOC)和健康状态(SOH)进行精确估计。为解决噪声协方差取值和粒子采样分布问题,该文首先提出自适应扩展粒子滤波(AEPF)算法,根据状态向量预测的准确度自适应调整噪声协方差,并利用扩展卡尔曼滤波实现粒子分布函数的局部线性化。随后利用双自适应扩展粒子滤波(DAEPF)算法进一步实现电池SOC和SOH的联合估计,避免电池使用过程中模型参数变化对SOC估计的影响,并结合多时间尺度的方法节约所需的计算资源。最后在动态工况条件下对不同电池模型与算法进行对照实验,结果表明,改进后的算法收敛速度明显提升,且能够显著地提高电池的SOC与SOH的估计精度。  相似文献   

5.
健康状态(state of health, SOH)是电池管理系统的重要参考依据,准确的SOH估计对保证电池安全稳定运行具有重大意义,其中提取可靠有效的健康特征描述电池老化状态以及构建精确稳定的估计模型是目前面临的主要问题。为了提高SOH估计精度,提出了一种基于模糊熵和粒子滤波(particle filter, PF)的锂离子电池SOH估计方法。首先,通过分析电池老化过程中的放电电压数据,提取模糊熵值作为电池的老化特征;其次,基于代谢灰色模型(metabolic grey model, MGM)和时间卷积网络(temporal convolutional network, TCN)构建描述锂电池老化特征的非参数状态空间模型;最后,通过PF实现锂电池SOH的闭环估计。此外,利用NASA锂电池数据集对所提出的SOH估计方法进行了验证,并与该领域其他方法进行对比实验。结果表明,所提方法最大估计误差在5%左右,相比于同类方法其估计精度提升了约50%,且在不同训练周期数条件下表现出较好的鲁棒性,验证了所提方法的可行性与优越性。  相似文献   

6.
于智斌  田易之 《电池》2023,(2):160-164
针对锂离子电池荷电状态(SOC)和健康状态(SOH)难以直接测量的问题,提出基于多新息的扩展卡尔曼粒子滤波(MIEKPF)与扩展卡尔曼粒子滤波(EKPF)协同估计SOC和SOH。采用EKPF算法在线辨识参数,并估计SOH,将阻容等辨识结果作为输入,弥补估计SOC时应该考虑电池老化影响产生的误差,实现SOH对SOC的修正,提高模型精度。在新欧洲驾驶周期(NEDC)工况下,进行充放电实验,EKPF算法估计SOH的结果符合实际情况。MIEKPF-EKPF算法最终SOC估计的平均误差为0.48%、最大误差为1.97%、均方根误差为0.58%,仿真结果验证了所提方法的可行性和准确性。  相似文献   

7.
准确的电池状态估计对于确保电池储能系统的安全可靠运行至关重要.电池的健康状态(SOH)虽然能反映电池的老化状态,但SOH估计模型的建立受到实际标签数据难以获得或是测试代价高昂的限制.文中基于无监督机器学习模型,建立了一种新的健康指标对电池进行状态评估.首先,从电池的电压-放电容量曲线选择特征,根据锂离子电池的老化机制将电池状态划分为健康和异常,使用健康的数据对基于卷积神经网络的自动编码器模型进行训练,根据自动编码器的输入、输出计算重构误差,最后将重构误差输入逻辑回归模型对电池状态进行判别.在开源的MIT-Stanford数据集上进行实验,验证了所提方法的有效性.  相似文献   

8.
针对锂电池状态估计通常只能采集到不完整的放电数据,导致难以准确判断锂电池状态的问题,提出一种基于随机片段数据的锂电池状态估计方法.以固定健康状态(SOH)差为间隔构建老化数据库,利用随机片段数据进行匹配,并采用粒子群优化算法进行求解,从而判断对应的锂电池初始荷电状态(SOC)及SOH等信息;基于二阶戴维南等效电路模型对锂电池进行建模,并对其参数进行辨识;基于状态匹配结果与所建模型,利用扩展卡尔曼滤波对锂电池SOC进行估计,获得锂电池的剩余放电时间等状态信息.利用锂电池单体放电数据进行实验验证,实验与仿真结果表明:与传统方法相比,所提方法具有较高的稳定性和准确率.  相似文献   

9.
锂离子电池健康状态(state of health,SOH)是电池管理系统的重要参数。精确的SOH估算可以提供故障和老化更换预警,保证储能电站的安全稳定运行。选取充电平均电流、放电平均电压与放电平均温度作为输入特征,结合卷积神经网络(convolutional neural networks,CNN)和双向长短期记忆网络(bi-directional long short-term memory,Bi-LSTM),提出基于CNN-Bi-LSTM的锂离子电池SOH在线估算方法。该方法通过CNN自动提取输入网格数据的空间特征,输入数据获取方便,无须储存大量数据。继而利用Bi-LSTM充分挖掘电池老化过程中的时序特征,最终实现精确SOH估算。美国国家航空航天局(national aeronautics and space administration,NASA)电池老化数据集上的测试结果表明,所提方法估算SOH的平均绝对误差与均方根误差分别低于1.07和1.32,精度优于Bi-LSTM和CNN-LSTM两种方法。  相似文献   

10.
为了更加高效地评估储能电池组的健康状态(SOH),提出一种基于电压极差特征的早期健康状态检测方法。首先基于大容量磷酸铁锂储能电池组开展循环老化试验,测量每次循环的电压极差信号,并从中提取关键时间点的电压特征;其次,基于皮尔逊(Pearson)相关系数及灰色关联度分析法(GRA)筛选与电池组老化高度相关的健康因子。最后,通过麻雀搜索算法(SSA)优化双向长短时记忆网络(BiLSTM)的超参数,搭建SSA-BiLSTM健康状态估计模型,实现储能电池组SOH评估;并结合常规机器学习算法验证了健康因子的有效性和估计模型的优越性。结果表明,所提取充放电静置30 min的电压极差特征能够有效反映电池组容量衰退趋势,多种模型验证下SOH估计误差均低于±0.8%。其中,本文所提出的SSA-BiLSTM模型均方根误差(RMSE)低至0.07%。因此该方法能够有效地对大容量储能电池组的SOH实现在线监测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号