首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
增材制造技术是一种不受加工工具限制成型复杂形状产品的添加式制造技术。简要概述了利用增材制造技术(AM)-3D打印成形粘结钕铁硼磁体的基本过程,比较了传统成形和3D打印成形两种方法制造粘结钕铁硼磁体的优点和不足,着重介绍了粘结钕铁硼磁制件的3种3D打印方法:三维打印粘结成型(3DP)、大区域增材制造技术(BAAM)、直接喷墨打印成型(Direct-write 3DP),并指出利用3D打印成型粘结钕铁硼磁体的发展趋势。3D打印作为一种先进的制造技术,可以实现复杂形状钕铁硼产品的近净成形,不需后续的机械加工,大大节约了资源,降低了能耗,提高了生产效率,可以制造传统方法难以制造的复杂结构制件。但是利用3D打印技术成型钕铁硼产品也存在一些困难,比如对打印粉体的尺寸、形状及成分要求较高、适合打印的粉体粘结剂以及如何提高粉体的固含量等问题,这些都将是今后磁性材料3D打印中需要解决的问题。  相似文献   

2.
3D打印技术是将原材料采用层层堆积法使其成型的一种增材制造新技术,目前,金属3D打印技术主要包括粉末床熔合技术(PBF)与定向能量沉积技术(DED)。PBF技术又包括选择性激光烧结技术(SLS)、选择性激光熔化成形技术(SLM)、直接金属激光烧结技术(DMLS)、电子束熔化成形技术(EBM)等。DED技术则主要包括直接金属沉积(DMD)、激光工程化净成形技术(LENS)、电子束自由成形制造(EBFFF)、电弧增材制造等。其中SLS、SLM、EBM、LENS是应用较为广泛的金属材料3D打印技术。本文主要介绍了SLS、SLM、EBM、LENS四种技术研究现状,并总结了金属3D打印技术未来可能的发展趋势。  相似文献   

3.
<正>近日,美国俄亥俄州HotEnd Works公司宣称正在为一个叫做加压喷雾(Pressurized spray technology,PSD)的3D打印技术申请专利。该公司即将推出的3D打印机HDfab就使用了这项技术。利用这一新技术,HDfab 3D打印能够快速打印各种先进的材料和陶瓷,如氧化铝、氧化锆、氮化铝、碳化钨、碳化硅、碳化  相似文献   

4.
<正>增材制造(Additive mannufacturing)俗称3D打印。英国Rolle-Royce公司采用3D打印技术制造出Trent XWB-97航空发动机用钛合金前轴承机匣,该机匣尺寸为?1 500 mm×500 mm,含有48个翼面,是目前航空发动机上最大的3D打印部件,采用3D打印工艺可节省30%的制造时间。Rolle-Royce公司已经对若干个装有该大型部件的Trent XWB-97发动机进行了地面测试,将要进行试飞。还将在近5年采用3D打印方法修复发动机部件。  相似文献   

5.
<正>近日,全球工程、技术和商业服务公司劳氏船级社(Lloyd’s Register of shipping,LR)宣布了一个用于石油和天然气行业的3D打印钛零件首次获得认证。LR并没有打印这个零件,而是用其现有框架来监督和认证整个过程,这也许能为制造商提供进一步的指导来认证其他3D打印组件。获得认证的零件由Safer Plug Company(SPC)设计,由AM(Metal Additive Manufacturing)生产公司3TRPD用粉末床熔融工艺3D打印而成,是一个用于管道中的钛入口歧管(gatewaymanifold)。  相似文献   

6.
通过一种新型3D打印方法——3D凝胶打印,打印出不锈钢零件,并且对金属料浆的流变性能进行了分析研究。结果表明:固含量为61.5%(体积分数)的金属料浆具有较好的流变特性,适合3D凝胶打印技术;打印出的坯体表面质量较好,没有明显的分层现象;打印的不锈钢坯体在1 350℃保温1 h烧结后,相对密度可达95.7%。  相似文献   

7.
<正>2021年3月16日,美国航空航天公司Primus Aerospace购买了Velo3D公司的Sapphire金属3D打印系统。Sapphire金属3D打印系统是Velo3D公司的新一代金属增材制造(AM)系统,也是Velo3D公司推出的第一台钛及钛合金专用的3D打印机。Sapphire系统使用了金属激光粉末床融合技术,常规系统通常需要支撑45°以下的表面,  相似文献   

8.
<正>比利时知名3D打印服务商Materialise近日宣布:他们原本为SLA(光固化)和DLP(数字光处理)技术开发的e-Stage软件现在也能用于金属3D打印了!其最大亮点是可以自动为打印件创建支撑结构,并且兼容钛、铝和不锈钢等多种金属。  相似文献   

9.
本文就金属3D打印技术的应用现状进行分析研究,寻找金属3D打印技术的存在问题,从金属3D打印技术的效率、打印产品性能、打印材料、打印机制作等方面阐述,剖析金属3D打印技术市场应用不广泛的原因,并提出金属3D打印技术发展的研发方向,以供参考。  相似文献   

10.
3D打印(增材制造)作为区别于传统去除型加工的新型制造技术,正以其简易的制造工艺、较低的生产成本和较短的研发周期,备受人们关注。目前,3D打印技术已经开始从研发阶段逐步向产业化发展,但是3D打印用金属粉末的成本及其性能成为制约该产业快速健康发展的瓶颈之一。3D打印用金属粉末需要满足高纯度、高球形度、细粒径和窄的粒径分布等要求。其制备方法主要有雾化法、等离子体法、旋转电极法、等离子熔丝法等。通过3D打印用金属粉末性能要求、制备方法、粉末性能对3D打印零件的成形效果影响等几个方面介绍国内外的一些研究进展,并提出目前3D打印用金属粉末制备所面临的问题。  相似文献   

11.
3D打印技术是快速原型制造技术的一种,也被称为增材制造技术,被誉为"第三次工业革命"的核心技术,其中金属3D打印被认为是将来制造业的主导方向.金属粉末材料是金属打印的物质基础,同时也是3D打印技术发展的突破点.综述了3D打印金属粉体材料的研究现状,重点介绍了钛合金、铝合金、不锈钢、高温合金和镁合金等5种金属粉体材料在3D打印技术中的应用,并对金属粉体材料的运用进行总结和展望.  相似文献   

12.
通过激光3D打印技术制备孔隙率为65%的多孔结构纯钛试样,对试样先进行酸蚀作为表面预处理,再利用植酸与饱和氢氧化钙的混合溶液进行表面活化改性处理。采用扫描电镜(SEM)、X射线光电子能谱仪(XPS)及接触角分析仪对3D打印纯钛改性前后的表面进行表面形貌观察、表面成分分析及表面接触角测试,并将改性处理前后的各组试样浸泡在模拟体液(SBF)中进行生物矿化实验,利用SEM及能谱(EDS)分析其表面生物矿化效果。结果表明:植酸/氢氧化钙表面活化改性处理后的3D打印致密纯钛表面水接触角为21.04°,表现出较好的亲水性,即植酸/氢氧化钙改性处理可大幅提高3D打印多孔结构纯钛的表面润湿性;在植酸/氢氧化钙表面活化改性处理过程中3D打印多孔结构纯钛试样表面通过植酸螯合反应引入了Ca,P元素,可显著加快其表面羟基磷灰石的沉积速度,提高表面生物矿化能力;在浸泡模拟体液7 d后能在改性后3D打印多孔试样的多孔支架上形成羟基磷灰石包裹层。  相似文献   

13.
这种3D打印技术是在三维模型中逐层打印的。常用术语是制造过程,例如3D数字模型文件。当今市场中3D打印机打印的基本原理与喷墨打印机的基本原理相似。唯一的区别是3D打印机比打印2D的普通打印机打印3D产品和打印更多的材料。印刷材料通常是墨水和纸张。有很多这样的打印机。对于此打印机,3D打印机常用的材料是树脂,金属,塑料,粉末和陶瓷。3D打印机中的计算机可以逐层控制"打印材料",沿着扫描路径进行打印,最后控制计算机蓝图以打印三维产品。在该技术的发展历史中,可以预测未来的发展状况。会有某些设计问题,不可能做到完美,只能慢慢地改善和减少问题。3D打印技术是个性化产品定制的重要生产方法。自身的结构和整体设计代表了该技术的发展状况。对于3D打印技术,进行了3D打印机成型精度分析研究与优化设计,利用该设备可以设计和制造用于新生产过程的实际设备。  相似文献   

14.
作为金属3D打印的主要耗材,金属粉末对打印产品的质量有着至关重要的影响,航空航天、国防、医疗等领域精密复杂零件的3D打印对粉末性能,如粒度、形貌和纯净度等有着较高的要求。研究并介绍了航空航天领域3D打印用高品质镍基、钴基合金及钛合金等金属粉末的基本要求及主要制粉工艺;对两种常用的高质量金属粉末制备工艺真空感应熔炼氩气雾化法(VIGA)和等离子旋转电极法(PREP)进行了比较,指出VIGA法细粉收得率高,但存在空心粉和卫星粉;PREP粉球形度高、表面光洁、粉末粒度分布窄、流动性好、陶瓷夹杂少,在金属3D打印领域具有独特的优势。为进一步提高PREP粉的质量,应开发更新一代等离子旋转电极雾化制粉技术及装备,提高细粉收得率和生产效率。  相似文献   

15.
在传统熔模铸造的基础上,开展了基于ProCAST及3D打印技术的快速铸造技术研究.以ProCAST为数值模拟平台,对闸瓦托充型、凝固过程的流场、温度场进行了模拟,选出最优方案;利用3D打印技术,完成了闸瓦托3D模型打印,消除了模具制造环节.结果表明,数值模拟技术、3D打印技术与传统的熔模铸造技术相结合,可将铸件试制周期缩短三分之一以上,并有效提高产品经济效益.  相似文献   

16.
《稀土》2018,(4)
正3D打印是一种折衷技术,用于几乎所有能想到的行业的应用,从简单地用塑料或纯金属制造出来。但用于制造具有导电性和磁性等特殊性能的材料可能还有很长的路要走。许多研究人员已经开发出3D打印磁铁的不同方法,最近为该领域做出贡献的组织是美国能源部关键材料研究所(CMI)使用3D激光金属打印技术来优化永磁材  相似文献   

17.
3D打印技术是一种先进的制造方法,在航空航天、生物医疗、汽车、军工等领域已得到较为广泛的应用。金属粉末作为金属3D打印技术的关键原材料,金属粉末的品质很大程度上决定了产品最终的成型效果。简要阐述了金属3D打印领域典型的金属材料和主要制备方法,最后,指出了金属3D打印领域中亟待解决的问题,并对金属3D打印前景做出了展望。  相似文献   

18.
3D打印技术是增材制造的重要方法,可以探索应用在在有色金属设备制造行业,促进行业的发展与进步。本文通过对《中国制造2025》基本方针和内容的阐述,介绍了3D打印技术的发展和技术特点,分析了3D打印技术与传统常规制造技术的关系,最后探讨了3D打印技术在有色金属装备制造中的应用。  相似文献   

19.
《粉末冶金工业》2016,(5):37-37
正2016年8月16日,全球领先的3D打印电子及金属3D打印系统供应商Optomec公司宣布,其气溶胶喷射技术(Aerosol jet technology)已经可以实现在微米尺度上带嵌入电子元件的3D聚合物和复合结构的打印。该公司宣称,这一突破将为电子和生物医药行业开发成本更低、尺寸更小的下一代产品带来巨大的应用前景。  相似文献   

20.
2015年以来,中国正式将3D打印纳入国家工业转型升级的重点方向。3D打印用金属粉末是3D打印技术的价值所在,越来越多的研究者致力于研究高质量低成本的3D打印用金属粉末制备技术。气雾化法制粉技术具有生产效率高、成本低、制备的粉末球形度较好等优点,可较好地满足3D打印用金属粉末的特殊要求。阐述了国内外金属合金粉末的制备技术的发展历程及发展现状,重点讨论了气雾化制粉技术,并指出了3D打印用金属粉末面临的问题及发展趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号