首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
高压压汞法结合分形理论分析页岩孔隙结构   总被引:2,自引:0,他引:2  
在页岩气勘探开发中,储层微观孔隙结构评价具有重要的意义。为了更有效地研究页岩储层微观孔隙结构特征,利用高压压汞实验结合分形理论对孔隙结构进行分析。高压压汞结果显示岩样孔隙半径主要分布在3~50 nm的中孔范围内,其中3~15 nm的孔隙占80%以上,该部分孔隙提供了大部分孔体积。研究岩样中孔的分形维数分析结果表明:页岩岩样中孔的分形分布可明显地分为2段,孔隙半径大于15 nm的孔隙分形维数接近3,说明该部分孔隙非均质性强,孔隙结构分布不均匀;孔隙半径小于15 nm的孔隙分形维数相对较小,该部分孔隙分布较为均匀。高压压汞曲线仅可对中孔和大孔进行分析描述,由于进汞压力大可能导致岩样遭到破坏,不宜利用高压压汞曲线对孔隙半径小于2 nm的微孔进行分析。  相似文献   

2.
基于氮气等温吸附、高压压汞测试结果,研究四川盆地三叠系须家河组陆相页岩孔隙结构的分形特征。分析结果表明:须家河组页岩孔隙结构复杂,基质孔隙以纳米级孔隙为主,孔径分布在2~100nm之间;须家河组页岩孔隙具有显著分形特征,分形维数在2.6~2.75之间,平均值为2.66;须家河组页岩分形维数与有机碳含量、微孔孔隙体积、比表面积正相关,与矿物含量相关性不强;页岩分形维数随热演化程度增加具有“先降后增再降”阶段性变化特征。探索性提出页岩优质储层孔隙分形维数分布范围在2.6~2.8之间,为我国陆相页岩储层定量表征及页岩气有利区评价提供新思路和手段。  相似文献   

3.
页岩储层特性是影响页岩气富集和开采的关键因素之一。四川盆地北部发育的上二叠统大隆组是重要的海相优质烃源岩,而针对川东北地区大隆组页岩储层的研究还有待深入。以川东北地区大隆组深层页岩为研究对象,利用高分辨率场发射扫描电镜、二氧化碳吸附、氮吸附及高压压汞等技术,开展大隆组深层页岩储层不同孔径孔隙结构的定性—定量研究,并运用基于二氧化碳吸附的V-S模型、氮吸附的FHH模型和高压压汞的分形几何模型对不同孔径的孔隙进行分形拟合,表征页岩孔隙结构的复杂程度和非均质性特征。结果表明,川东北地区大隆组深层页岩储层发育丰富的纳米级有机孔和少量的无机孔,有机孔发育特征随有机质显微组分不同和分布形式差异而显示强的非均质性。大隆组深层页岩孔隙结构与龙马溪组深层页岩相似,以介孔和微孔为主,占总孔体积的90%以上;页岩孔隙结构主要受有机质丰度的影响。分形特征研究结果显示,深层页岩宏孔非均质性强于介孔和微孔。其原因可能为深层页岩微孔孔径较小,分布集中,成因单一,受成岩作用影响较小,孔隙结构较为简单,具有较小分形维数;而宏孔孔径较大,分布范围较广,成因多样,易受成岩作用影响,表现出强非均质性。深层页岩微孔—介孔因其丰...  相似文献   

4.
为探讨页岩储层中微孔、介孔和宏孔分形特征以及当前广泛应用的各分形模型的适用性,以鄂尔多斯盆地海陆过渡相太原组页岩气储层为研究对象,通过高压压汞实验和低温氮气吸附实验测试泥页岩孔隙结构参数。利用MENGER海绵模型计算高压压汞测试结果中宏孔分形维数,Frenkel-Halsey-Hill(F-H-H)模型计算低温氮气吸附测试结果中介孔分形维数,并尝试引入Volume-Specific Surface Area(V-S)模型计算低温氮气吸附测试结果中微孔分形维数。以拟合优度R2值为评价指标,与前人基于不同计算方案的结果相互论证,借此探讨不同尺度孔隙的最佳分形维数计算模型。结果表明:微孔分形维数(D1)介于2.013 6~2.294 4之间,平均为2.113 2,介孔分形维数(D2)介于2.579 3~2.762 2之间,平均为2.640 5,宏孔分形维数(D3)介于2.786 3~2.998 5之间,平均为2.933 9。随孔径增大,分形维数值呈增大趋势,孔表面愈发粗糙。F-H-H模型和V-S模型是泥页...  相似文献   

5.
为了评价海陆过渡相煤系页岩气储层性质,采用扫描电镜、高压压汞、低温液氮和CO2吸附等实验方法,对川南地区二叠系龙潭组页岩微观孔隙的发育情况、结构特征进行研究,并分析龙潭组页岩孔隙发育的主要影响因素。结果表明:川南地区龙潭组页岩储集空间多样,常见粒间孔、溶蚀孔和有机质孔,孔隙形态以圆形、椭圆形、三角形、不规则状为主,这些微观孔隙为页岩气赋存提供储集空间。龙潭组页岩纳米级孔隙以微孔和介孔为主,占孔隙总体积的56.2%,占总比表面积的80%以上,是页岩气赋存的主要载体;孔容与比表面积呈正相关性,其中介孔(BJH)孔容、微孔(DFT)孔容与比表面积线性关系拟合较好;页岩孔隙结构类型主要以平板狭缝型、柱形和混合型为主,孔径主要分布于0.2~1nm、3~30nm之间,平均为4.66nm。龙潭组页岩气储层孔隙发育受页岩的有机碳含量和成熟度影响较大,孔隙度和孔容随有机碳含量增大而增大,并与成熟度有密切关系;黏土矿物一定程度上利于储层孔隙发育,与页岩总孔容呈正相关性,脆性矿物则相反。  相似文献   

6.
分形维数是分析煤和页岩微观孔隙结构的重要参数之一。目前主要是基于低温N2吸附数据进而利用Frenkel?Halsey?Hill(FHH)模型,获得煤和页岩中孔(2~50 nm)与宏孔(>50 nm)的表面粗糙分形维数,对其微孔(<2 nm)分形维数的研究还较少。为深入研究煤和页岩的微孔特征,基于微孔填充与孔径分布理论,对比分析了煤和页岩微孔结构的分形特征。选取煤和页岩样品进行低温CO2吸附实验,计算并分析两者的微孔分形维数。结果表明:煤的微孔分形维数分布在2.6~2.8之间,平均为2.75;页岩的微孔分形维数分布在2.8~2.9之间,平均为2.88。煤的微孔比表面积分布在100~300 m2/g之间;页岩的微孔比表面积集中在15~30 m2/g之间,页岩的孔隙分布零散且数量少,说明分形维数越大,微孔结构更加复杂。此外,分别对煤与页岩的微孔分形维数、表面粗糙分形维数进行了对比,发现虽然煤的微孔比表面积均远大于页岩,但其孔径分布、孔隙结构比页岩简单,微孔分形维数小于页岩。同时,由于中孔、宏孔数量少,比表面积小,孔隙表面较为光滑,煤的表面粗糙分形维数小于页岩。微孔分形维数和表面粗糙分形维数分别受微孔结构复杂程度与中孔、宏孔表面粗糙程度的影响,微孔结构越复杂,中孔、宏孔表面越粗糙,分形维数越大。  相似文献   

7.
为了更好地评价页岩孔隙大小分布特征,通过高压压汞、液氮吸附以及低温二氧化碳吸附实验分别对页岩宏孔、介孔、微孔进行定量评价,并将实验测试结果有机结合起来,建立了页岩全尺度孔径分布评价方法,同时利用电镜扫描法描述页岩孔喉结构影响因素。研究结果表明,高压压汞法能准确获取大于20 nm的孔隙,液氮吸附法能准确获得2~50 nm大小的孔隙,低温二氧化碳吸附法能获取0.3~2 nm大小的孔隙,可最终获得页岩全尺度的孔径分布特征,页岩微孔和介孔比较发育,所占比例高达90%以上,大孔极少且比较分散,页岩微裂缝不发育,比较分散,连通性较差。此研究为评价页岩纳米孔隙中气体储集能力及可流动性提供了先进技术手段,从而指导页岩气水平井高效开发。  相似文献   

8.
为了研究页岩储层微观孔隙结构特征,以川南地区龙马溪组页岩为研究对象,应用场发射扫描电镜(FE-SEM)定性描述页岩镜下孔隙形态及确定其类型,创新使用低温氩气(Ar)吸附实验测量页岩样品的比表面积、孔体积以及孔径分布,实现了页岩小于100 nm(纳米级)孔隙的连续测量,并根据FrenkelHalsey-Hill(FHH)模型研究了页岩孔隙结构的分形特征,探讨了有机质对页岩孔隙结构及分形特征的影响。结果表明:川南地区龙马溪组页岩储层主要发育有机质孔、粒间孔及粒内孔,并以有机质孔为主。Ar吸附等温线表明,纳米级孔隙以狭缝型为主,孔径主体分布在10 nm以下的微孔和介孔中,呈“三峰”特征,微孔主要集中在0.6~0.9 nm以及1.8~2.0 nm,介孔主要集中在4.0~5.0 nm。纳米级孔隙分形维数为2.55~2.64,表现出较强的非均质性。有机碳(TOC)含量控制了页岩纳米级孔隙的发育,TOC含量的增加使得页岩中微孔及其所占比例增高,分形维数增大,孔隙结构趋于复杂,有利于页岩储层吸附能力的增强。该研究成果对川南地区龙马溪组页岩储层纳米级孔隙结构特征研究具有重要意义。  相似文献   

9.
川南龙马溪组页岩孔隙结构综合表征及其分形特征   总被引:1,自引:0,他引:1  
为了科学评价川南地区龙马溪组页岩孔隙发育特征对页岩气赋存与流动过程的影响,综合采用压汞、液氮吸附及二氧化碳吸附等测试方法,对页岩孔隙结构进行全尺度表征,并对不同尺寸的孔隙进行分形拟合,计算综合分形维数,最后结合地球化学和矿物组成对综合分形维数的影响因素进行探讨。结果表明:页岩样品孔径分布呈多峰态,各阶段孔隙均对总体积有一定贡献,而孔隙比表面积主要由微孔和介孔贡献。龙马溪组页岩孔隙符合分形规律,具有自相似性,宏孔孔隙结构较介孔、微孔更为复杂。以2个孔径段的孔体积比为加权值,计算获得综合分形维数为2.491~2.623,平均为2.560,孔隙结构较为复杂。有机碳含量和矿物组成对综合分形维数具有明显控制作用,有机碳含量越高,综合分形维数越大。孔隙结构复杂程度与综合分形维数呈正相关关系,脆性矿物含量与综合分形维数呈负相关关系,有机质成熟度和黏土矿物对孔隙综合分形维数有积极影响。  相似文献   

10.
高压压汞法和氮气吸附法分析页岩孔隙结构   总被引:16,自引:0,他引:16  
页岩储层的孔隙结构对页岩含气性评价和勘探开发具有重要意义,但目前国内对于页岩孔隙结构的研究相对较少.为此,采用高压压汞实验和低温氮气吸附实验对页岩的孔隙结构进行了研究,计算了页岩的孔隙结构参数,并结合微观孔隙结构图片分析了页岩孔隙结构对气体吸附和渗流的意义.研究表明,页岩孔隙以微孔和过渡孔为主,微孔和过渡孔提供了大部分孔体积.有机质中的微孔是页岩比表面积的主要贡献者,构成了页岩气体的主要吸附空间.页岩的孔隙类型复杂,孔隙形态多样,存在一端封闭的不透气性孔、开放性的透气性孔和墨水瓶孔等多种孔隙,且孔隙之间的连通性较差.较高的微孔和过渡孔保证了页岩储层具有很高的吸附聚气能力,但中孔和大孔发育较差,不利于气体渗流和页岩气藏的开发.  相似文献   

11.
根据铸体薄片以及扫描电镜实验结果,对马岭油田北三区延10储层主要孔隙特征进行研究,并利用高压压汞实验的毛细管压力图,计算不同岩样的分形维数。结果表明,研究区主要的孔隙类型为粒间孔、溶孔以及晶间孔,喉道类型为点状、片状以及弯片状;分形维数与储层物性参数以及孔隙结构参数相关性较好,可以综合表征储层的微观非均质程度;分形维数具有分区特征,主要由于研究区溶孔以及微孔隙的存在导致微观非均质性的增强,可用于储层的分类评价中。  相似文献   

12.
页岩储层微观孔隙结构特征   总被引:85,自引:3,他引:85  
为了研究页岩储层的微观孔隙结构特征,应用场发射环境扫描电子显微镜观察了页岩表面纳米级孔隙微观形态,并通过低温氮吸附法测定了页岩的氮气吸附等温线,同时结合高压压汞实验对页岩储层孔隙结构进行了深入研究。研究结果表明:页岩储层孔隙处于纳米量级,孔隙类型可分为有机质纳米孔、黏土矿物粒间孔、岩石骨架矿物孔、古生物化石孔和微裂缝5种类型,其中有机质纳米孔和黏土矿物粒间孔发育最为广泛;页岩孔径分布复杂,既含有大量的中孔(2~50nm),又含有一定量的微孔(<2nm)和大孔(>50nm);孔径小于50nm的微孔和中孔提供了大部分比表面积和孔体积,是气体吸附和存储的主要场所;页岩阈压非常高,孔喉分选性好,连通性差,退汞效率低,中孔对气体渗流起明显贡献作用,微孔则主要起储集作用。  相似文献   

13.
为了研究鄂尔多斯盆地北部页岩气赋存条件,应用氩离子剖光扫描电子显微镜、压汞、低温N2吸附解吸等方法,对鄂尔多斯北部EY-1井太原组黑色泥页岩微观孔隙类型及特征进行研究。结果表明:泥页岩样品中主要发育有机质孔、粒内孔、黄铁矿晶间孔、粒间孔、溶蚀孔和微裂隙等孔隙类型。其中,微裂隙长度为0.5~3.0 mm,缝宽1~10μm,连通性较好。高压压汞测得孔隙度平均为0.916 04%,孔径主要集中于微孔和过渡孔,上部的页岩孔隙连通性明显好于下部;用DFT法测得的样品内部孔径小于100 nm,分布呈现双峰,过渡孔较为发育。研究获得的页岩孔隙特征,为鄂尔多斯北部太原组页岩气赋存和储集规律研究提供了重要的参考依据。  相似文献   

14.
利用氮气吸附法和压汞法联合表征下扬子皖南地区二叠系页岩的孔隙分布、孔隙度及分形特征。结果表明,研究区二叠系页岩中发育的孔隙以微孔和大孔为主,其中微孔的体积占页岩总孔隙体积的33.63%~81.08%,平均为56.45%;联孔孔隙度明显高于压汞孔隙度,平均增加96.06%;页岩在微孔和过渡孔—大孔区间均具有明显的分形特征,且微孔的分形维数比过渡孔—大孔更加分散,说明页岩中微孔的非均质性和复杂程度要高于过渡孔—大孔;微孔的孔隙度和分形维数与总有机碳含量、比表面积和生烃潜量呈正相关关系,与石英含量呈负相关关系;过渡孔—大孔的孔隙度和分形维数与总有机碳含量、石英含量呈负相关性,与比表面积和粘土矿物含量之间没有明显的相关性。随着埋深的增加,微孔的孔隙度和分形维数变化较小,过渡孔—大孔的孔隙度和分形维数明显降低,且分形维数对埋深的敏感性高于孔隙度。  相似文献   

15.
四川盆地长宁地区下志留统龙马溪组页岩广泛发育,该地区页岩储层的微观孔隙结构及全尺度孔径分布特征尚不明确,运用聚焦离子束扫描电镜、高压压汞、低温氮吸附及低温CO2吸附等实验技术,以宁203井为例,研究了龙马溪组下部页岩储层的孔隙结构特征,并建立了一套页岩纳—微米全尺度孔径分布测试分析方法。该方法利用气体吸附法和高压压汞法获得第1孔径分布数据和第2孔径分布数据,通过对2种方法获得的重复部分孔径分布数据进行差异性分析,并根据分析判断结果获取处理后的孔径为3.7~200.0 nm的分布数据,再结合2种方法获得的不重复部分的孔径分布数据,从而可以计算微孔、介孔和宏孔在整个岩石样品中的占比,获得岩石样品全尺度孔径分布数据。结果表明:该区龙马溪组下部页岩孔隙结构复杂,“墨水瓶”状细颈孔隙大量存在,微孔与中孔、大孔相互连通,但孔喉细小,连通性较差;介孔和微孔占比超过80%。直径> 15 nm的孔喉中主要为游离气,直径< 2 nm的孔喉中主要为吸附气。  相似文献   

16.
页岩孔隙结构的定量表征可为页岩储层质量评价提供基础参数,但是利用常规方法很难准确表征页岩的微米-纳米级孔隙结构。 以四川盆地龙马溪组含气页岩为研究对象,综合对比常用的氮气( N 2)吸附法、高压压汞法、核磁共振法等页岩测试手段的原理及优缺点,提出利用低压氮气吸附法测得的累计孔径分布来拟合页岩核磁 T 2 谱相对应的累计孔径分布,优化页岩核磁 T 2 谱与孔径的转换系数 C ,进而应磁共振测试结果来表征页岩中不同尺度的孔隙分布。 该方法可以弥补传统的低压氮气吸附与高压压汞联合表征方法的不足,因为高压压汞法测试可能会导致页岩破裂,产生大量微米级裂缝,这些微裂缝很难与天然微裂缝区分开。 此外,核磁共振具有对岩样加工简单、人工破坏性小、测试不需外来压力等优点,因此推荐低压氮气吸附法与核磁共振法联合表征页岩的孔隙结构方法,它能科学、准确地表征页岩的孔喉分布。 研究表明,龙马溪组页岩孔径分布曲线具有双峰或三峰特征,主要孔径为 0.2~100.0 nm ,介孔和微孔占优势,孔隙体积百分比分别为 67.75% 和 25.33% 。 最终明确了该区页岩储层孔隙结构的定量表征方法。  相似文献   

17.
页岩储层的孔隙结构对页岩的含气性评价和勘探开发具有重要意义。采用氩离子抛光结合扫描电子显微镜(FIB-SEM)、低温氮气吸附实验和高压压汞实验对湘鄂西地区五峰组—龙马溪组页岩储层的微观孔隙结构进行了定性及定量分析。研究结果表明,湘鄂西地区页岩储层孔隙为纳米量级,孔隙类型主要为有机孔隙、粒内孔隙和次生溶蚀孔隙,局部可见少量矿物层间收缩缝。页岩孔径分布复杂,既含有大量的中孔,又含有一定量的微孔和大孔。微孔和中孔提供了大部分比表面积和孔体积,是气体吸附和存储的主要场所。  相似文献   

18.
中国南方海相页岩孔隙结构特征   总被引:26,自引:0,他引:26  
我国南方古生界页岩成熟度高,页岩储层孔隙、裂隙类型多样,微米—纳米级孔隙发育。正确认识页岩孔隙特征是研究上述地区页岩气赋存状态,储层性质与流体间相互作用,页岩吸附性、渗透性、孔隙性和气体运移等的基础。为此,采用观察描述和物理测试两类方法对南方海相页岩孔隙特征进行了研究:前者通过手标本、光学显微镜、扫描电镜、核磁共振光谱学法、小角度X射线散射法等手段直观描述页岩孔隙的几何形态、连通性和充填情况,统计孔隙优势方向和密度,拍摄照片等,以确定页岩成因类型;后者通过He孔隙率测定、压汞实验、低温液氮吸附、低温CO2吸附等方法定量测试页岩孔容、孔径大小及其分布、孔隙结构、比表面积等,以评价页岩含气性。结果表明:该区古生界页岩储层中纳米级孔隙以干酪根纳米孔、颗粒间纳米孔、矿物晶间纳米孔、溶蚀纳米孔为主,喉道呈席状、弯曲片状,孔隙直径介于10~1 000nm,主体范围为30~100nm,纳米级孔隙是致密储层连通性储集空间的主体;按孔径大小,将页岩储集空间分为5种类型:裂隙(孔径大于10 000nm)、大孔(孔径介于1 000~10 000nm)、中孔(孔径介于100~1 000nm)、过渡孔(孔径介于10~100nm)、微孔(孔径小于10nm)。  相似文献   

19.
基于低温氮气吸附分形几何学研究方法,对鄂尔多斯盆地东北缘陆相延安组及海陆过渡相太原组富有机质煤系页岩进行孔隙结构和分形特征研究,运用分形FHH模型计算了大孔隙(4.34~100nm)和小孔隙(4.34nm)对应的分形维数D_1与D_2,对比讨论了孔隙结构参数与分形维数的关系,以及TOC、矿物含量对两者的影响。研究结果表明:(1)延安组孔径分布在1.8~59nm,呈"双峰型",以墨水瓶状、狭缝状和平行板状孔为主;太原组孔径主要分布在3~4.5nm,呈"单峰型",以墨水瓶状孔为主。(2)煤系页岩具有双重分形特征,D_1与D_2正相关,且D_1D_2,表明大孔隙空间结构更加复杂。延安组两类孔隙空间结构均比较复杂,太原组大孔隙空间结构非常复杂,而小孔隙均质性强。(3)煤系页岩平均孔径越小,微小孔隙越多,比表面积越大,总孔体积越大,分形维数越大,即孔隙结构越复杂,孔表面越不规则;延安组D_1、D_2和太原组D_1均可反映各自孔隙结构特征。(4)太原组孔隙结构参数和分形维数受TOC及矿物成分含量影响较延安组明显。(5)延安组页岩储层优于太原组,更利于煤系页岩气的吸附、赋存、扩散和渗流。  相似文献   

20.
选取鄂尔多斯盆地镇北地区延长组7块超低渗透岩心样品,分别开展铸体薄片、扫描电镜、X衍射、高压压汞和核磁共振等实验,明确了超低渗透储层孔喉分布特征、孔隙类型、矿物组成及其含量;运用分形理论研究了储层孔喉分形特征,系统分析了分形维数与储层物性、孔隙结构参数和矿物成分及其含量之间的关系。结果表明:研究区储层孔隙类型主要为残余粒间孔、溶蚀孔和晶间孔。储层矿物成分以石英和长石为主,黏土矿物中绿泥石含量最高。根据毛管压力曲线形态和排驱压力可将储层孔隙结构分为Ⅰ类、Ⅱ类和Ⅲ类3种类型,其储集性能和渗流能力依次变差,孔隙结构非均质性逐渐增强。高压压汞所得的孔喉大小分布具有多重分形特征,依据分形特征曲线存在的明显转折点,将孔隙空间分为大孔、中孔和微孔,微孔相对于大孔和中孔而言孔隙分布较为均匀和规则,对应分形维数最小。核磁共振技术可以更全面地表征储层的孔隙空间,T2T2cutoff段孔喉分布不具有分形特征,T2T2cutoff段可动流体孔隙空间和有效孔隙符合分形结构,对应的分形维数均反映相互连通孔隙的复杂程度。储层孔喉分形维数与孔隙度和渗透率之间具有较好的负相关性,与孔隙结构参数之间也存在较好的相关关系,储层的矿物组成及其含量是决定分形维数大小的内在因素,进而影响储层质量和孔隙结构特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号