首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Manipulations of singlet oxygen (1O2) generations by the integration of both aggregation-induced emission luminogen (AIEgen) photosensitizer and photochromic moieties have diversified features in photodynamic therapy applications. Through Förster resonance energy transfer (FRET) pathway to induce red PL emissions (at 595 nm) for 1O2 productions, [1]rotaxane containing photosensitive tetraphenylethylene (TPE) donor and photochromic diarylethene (DAE) acceptor is introduced to achieve dual and sequential locked/unlocked photoswitching effects by pH-controlled shuttling of its contracted/extended forms. Interestingly, the UV-enabled DAE ring closure speeds follow the reversed trend of DAE self-constraint degree as: contracted < extended < noninterlocked forms in [1]rotaxane analogues, thus FRET processes can be adjusted in contracted/extended forms of [1]rotaxane upon UV irradiations. Accordingly, the contracted form of [1]rotaxane is FRET-OFF locked and inert to UV exposure due to the larger bending conformation of DAE parallel (p-)conformer, compared with its extended and noninterlocked analogues possessing switchable FRET-OFF/ON behaviors activated by dual and sequential pH- and photoswitching. Owing to the advantages of 1O2 productions tuned by multistimuli inputs (pH, UV, and blue light), an useful logic circuit for toxicity outputs of the surface modified [1]rotaxane nanoparticles (NPs) has been demonstrated to offer promising 1O2 productions and managements based on mechanically interlocked molecules for future bioapplications.  相似文献   

2.
稀土离子掺杂铁电陶瓷是一类新型光致变色材料, 在光开关、光信息存储等领域具有潜在应用价值。本研究采用水热法制备了(K0.5 Na0.5)1-xEuxNbO3(KNN:xEu)前驱体粉体, 随后利用高温烧结得到对应陶瓷样品。在465 nm激发下, 观察到615 nm处有强的红色发光, 对应于Eu 3+5D07F2跃迁。通过紫外光照射, KNN:Eu陶瓷从乳白色变为深灰色。随后经过200 ℃加热10 min, 着色陶瓷又变回到初始颜色, 显示出良好的光致变色行为。紫外照射和反复加热循环可以有效调控该陶瓷的发光强度。且经过多次循环之后, 发光强度没有明显衰减。在紫外光照射下, KNN:0.06Eu陶瓷发光强度的可调比(ΔRt)高达83.9%, 说明发光具有良好的可调性。进而结合发光中心和色心之间的能量转移, 对KNN:Eu陶瓷的光致变色和发光机理进行了解释。  相似文献   

3.
We report white-light luminescence from ZnO-organic hybrid light emitting diodes grown on glass substrate by low temperature aqueous chemical growth. The configuration used for the hybrid white light emitting diodes (HWLEDs) consists of two-layers of polymers (PEDOT:PSS/PFO) on glass with top ZnO nanorods. Electroluminescence spectra of the HWLEDs demonstrate the combination of emission bands arising from the radiative recombination in polymer and ZnO nanorods. In order to distinguish emission bands we used a Gaussian function to simulate the experimental data. The emitted white light was found to be the superposition of a blue line at 454 nm, a green emission at 540 nm, orange line at 617 nm, and finally a red emission at 680 nm. The transitions causing these emissions are identified and discussed in terms of the energy band diagram of the hybrid junction. Color coordinates measurement of the WLED reveals that the emitted light has a white impression with 70 color rendering index and correlated color temperature 5500 K. Comparison between ITO and aluminum top contacts and its influence on the emitted intensity is also discussed.  相似文献   

4.
A nitrobenzoxadiazolyl(NBD)‐based fluorescent dye and a photochromic spiropyran derivative are incorporated into polymeric nanoparticles via a one‐step miniemulsion polymerization. The diameter of the nanoparticles can be varied from approximately 40 nm to 80 nm by adjusting the polymerization conditions. The prepared nanoparticles exhibit the spectral properties of both NBD dye and spiropyran, indicating that the two chromophores are incorporated into the nanoparticles. The determined amount of NBD and spiropyran in the nanoparticles are about ≈85–90% of the feed amount, while the determined weight ratios of spiropyran to NBD in nanoparticles are very close to that of feed ratios, suggesting the miniemulsion polymerization is a suitable approach for incorporating multiple chromophores into individual nanoparticles with controlled amounts (content) and ratio. UV and visible light can be applied to modulate the fluorescence emission of NBD dye in nanoparticles. Upon UV irradiation, the spiropyran moieties in nanoparticles are converted to the open‐ring (McH form) structure and upon visible‐light irradiation they return to the closed‐ring (SP form) structure; as a result, the fluorescence of NBD can be reversibly “switched off” and “switched on”. Fluorescence resonance energy transfer from the excited NBD dye molecules to the McH form of the spiropyran moieties is the drives the fluorescence modulation. The nanoparticles display fairly good photoreversibility, photostability, and relatively fast photoresponsivity upon alternate UV/Vis irradiation. This class of photoresponsive nanoparticles may find applications in biological fields, such as labeling and imaging, as well as in optical fields, for example, individually light‐addressable nanoscale devices.  相似文献   

5.
利用真空蒸发的方法在玻璃载片上沉积了 18烷基取代螺吡喃薄膜 ,并利用光吸收谱和光电子谱研究了薄膜的光致变色特性及变色前后分子结构的变化情况。实验结果发现 ,真空蒸发沉积的 18烷基取代螺吡喃薄膜具有良好的光致变色性能 ,在紫外光的照射下可以发生明显的光致变色反映。光电子谱分析 :经紫外线照射后 ,N1s、O1s光电子峰发生明显的变化 ,说明经紫外线照射后分子结构发生了变化 ,导致分子内部电荷的重新分布。另外紫外线照射后氧含量增加 ,这是因为紫外线照射后薄膜表面对水汽的吸附能力增加所致  相似文献   

6.
An organic monolayer with diarylethene and viologen moieties as a photochromic and an electroactive group, respectively, was constructed on a hydrogen-terminated Si(111) surface by sequential surface reactions. Photoswitching behaviour of electron transfer from the Si electrode to viologen moiety, larger and smaller current after UV and visible irradiation, respectively, was observed. This photoswitching behaviour can be explained by a change in molecular conductivity of diarylethene moiety, which separates Si surface and viologen moiety, as a result of ring closing and opening induced by UV and visible irradiation, respectively.  相似文献   

7.
《Optical Materials》2014,36(12):2561-2564
In this paper, we report the preparation and spectroscopic properties of Yb2+-doped silica-based glass prepared by the solid state reaction using the oxyhydrogen flame fusing process. The glass exhibits broadband emission in the visible region due to a 5d–4f transition of the rare earth ions. The emission peak wavelength and bandwidth are especially 505 nm and 147 nm for Yb2+-doped silica-based glass at the room temperature. The color coordinate calculation shows that the Yb2+-doped silica-based glass has a better color coordinate (0.28, 0.37) in the white light region.  相似文献   

8.
Dopings of vaporized cis-1,2-dicyano-1,2-bis(2,4,5-trimethyl-3-thienyl) ethane (CMTE) into poly(methyl methacrylate) (PMMA), polystyrene, and polycarbonate were performed by a vacuum process, and the doping behaviors of CMTE were evaluated. Among the matrix polymers, PMMA was dispersed CMTE densely in its surface region. By using the CMTE-doped PMMA, we could fabricate a novel rewritable medium: a multi-layered film was prepared from over-coating of CMTE-doped PMMA onto poly(p-phenylene vinylene) (PPV) film, which set on a transparent substrate. Image storage could be performed upon irradiation at 365 nm at the side of CMTE/PMMA layer: color of the irradiated area changed a light yellow to a red due to photo-isomerization of CMTE. Next, upon irradiation at 365 nm at the side of the transparent substrate, PPV emitted a green fluorescence at around 530 nm, and the CMTE absorbed the emission from PPV causing image-erasure based on back-isomerization of CMTE.  相似文献   

9.
In this study, synthesis and characterization of novel quaternary tellurite glass system TeO2–Bi2O3–GeO2–Li2O is presented. The compositions include TeO2 and GeO2 as glass formers while different proportion of Bi2O3 and Li2O act as network modifiers. Differential thermal analysis, X-ray diffraction, scanning electron microscopy energy dispersive X-ray spectroscopy, laser ablation inductively coupled plasma mass spectrometry, UV–Vis and Raman spectroscopy are applied to study the structural, thermal and optical properties of the studied glasses. Obtained glasses possess a relatively low glass transition temperature (around 300 °C) if compared to other tellurite glasses, show good thermal transparency in the visible and near infra-red (from 2.4 to 0.4 μm) and can double the frequency of laser light from its original wavelength of 1064 nm to its second-harmonic at 532 nm (i.e. second harmonic generation).  相似文献   

10.
The radiative emission properties of the Dy3+ ions in oxyfluoride glasses and glass ceramics have been investigated for the generation of white light. The X-ray diffraction pattern of the glass ceramics reveals the presence of NaAlSiO4 nanocrystals along with secondary phase of NaY9Si6O26 in the glass matrix after a suitable thermal treatment of the pristine glasses. Intense white light emission has been observed when the samples are excited with 350 nm light. Yellow to blue emission intensity ratios and chromaticity color coordinates have been determined from the visible luminescence spectra. All color coordinates are found to lie in the white region of the chromaticity color diagram proposing the suitability of the present studied materials for color display devices.  相似文献   

11.
We report the feasibility of nanosecond laser patterning of ZnO layer in CIGS-based solar cells. Patterning the ZnO layer on top of the entire solar cell structure (i.e. substrate configuration), as well as scribing the transparent conducting oxide layer on glass substrate (i.e. superstrate configuration) was studied at frequency doubled and quadrupled Nd:YAG wavelengths. We found that the 100 nm ZnO/glass structure can easily be patterned by both wavelengths, while for the 1 μm thick layer better results were achieved with UV pulses. In the substrate configuration patterning with the visible laser permits controllable cutting, while even mild UV processing causes severe damage to the underlying CIGS layer.  相似文献   

12.
Aqueous-dispersible Yb3+-Er3+ co-doped hexagonal LaF3 nano-crystals were synthesized by a low-temperature aqueous phase approach in the presence of d-glucose. These nano-crystals are about 15-20 nm in rectangular shape and are easily dispersed in water, producing a transparent colloidal solution; they can also be precipitated and separated by the addition of NaOH. The morphology, crystal structure, fluorescence properties of these nano-crystals were analyzed by TEM, XRD, and spectroscopy, respectively. Furthermore, these nano-crystals exhibit red and green fluorescence in the visible spectral region when they are excited at 980 nm. The nano-crystals can be coated by a silica shell and their shape is not changed, which will be useful in the application of biological labeling.  相似文献   

13.
Dy3+ ion-doped Y2O3 phosphors have been synthesized and characterized for structure and optical properties. Structural characterization reveals that the samples are well crystalline. The crystallinity and particle size increases as the sample is post annealed, while optical quenching entities are reduced due to which a significant enhancement in fluorescence is observed. The phosphor is efficiently excited by ultraviolet light and emits intense blue (486 nm), yellow (573 nm), red (666 nm), and near infrared (764 nm, 823 nm) light. The emission is also observed even if charge transfer band (CTB) is excited, via energy transfer from CTB to 4f levels of Dy3+ ion. The intensity of yellow transition band varies with a variation in concentration of Dy3+ ion as well as with excitation wavelength, while the intensity of other transitions remains unaffected. Thus a variation in yellow to blue color (Y/B) gives an opportunity for the development of color tunable phosphor.  相似文献   

14.
本论文合成了三种新的二芳基乙烯类光致变色化合物1-(2,5二甲基噻吩-3-基),2-[2-甲基-5-(4-甲氧苯基噻吩)-3-基]全氟环戊烯(1a),1-(2,5二甲基噻吩-3-基),2-[2-甲基-5-(4-乙氧苯基噻吩)-3-基]全氟环戊烯(2a),1-(2,5二甲基噻吩-3-基),2-[2-甲基-5-(4-氯苯基噻吩)-3-基]全氟环戊烯(3a),并且研究了它们的光电特性.实验结果表明这些二芳烯化合物在溶液和PMMA膜片中均具有良好的光致变色性能.在313nm紫外灯的照射下,这些二芳烯化合物的溶液和PMMA膜片均由无色变为蓝色,在适当波长可见光照射下,它们均从有色态返回到无色态.在不同的溶液和PMMA膜片中,这些化合物在它们各自的激发波长的照射下均显示出较强的荧光.在313nm紫外灯的照射下,二芳烯由开环态变为闭环态,荧光强度逐渐降低.  相似文献   

15.
A transparent rutile thin film 100 nm thick was fabricated on a quartz glass substrate; it was responsive to visible light and had a higher sensitivity to UV light than an anatase thin film formed by sol–gel method under identical conditions. The crystal structure was determined by observations using X-ray diffraction, Raman spectra, and a transmission electron microscope. The oxygen/titanium ratio of the rutile thin films was 1.78 according to the XPS peaks. The photoreactivity and photoinduced hydrophilicity of the rutile thin films was examined by measuring the pseudo first-order rate for the decoloration of methylene blue in an aqueous solution and the water contact angle, respectively. The high photoreactivity and photosensitivity of the O-deficient rutile thin film, whose optical band edge and refractive index were 3.10 eV and 2.2, respectively, were due to electron traps and assisted by O-defects within the rutile particles.  相似文献   

16.
采用溶胶-凝胶法分别制备了硅钨酸与聚乙烯吡咯烷(SWA/PVP)质量比分别为5:1000、10:1000、20:1000、40:1000和80:1000的光致变色玻璃隔热涂层,利用TEM、FTIR和UV-Vis等方法对涂层进行了表征。TEM结果表明,复合薄膜表面平整,粒径约为30nm的SWA分子均匀分布在PVP网络中。SWA/PVP涂层在可见光区的主要吸收波长为550~700nm,随着SWA含量的增加,涂层的紫外吸收能力逐渐增强。涂层在630nm红光波段具有最强的吸收,随着SWA含量的增加涂层对光的吸收增强,此涂层将具有很好的隔热性能。  相似文献   

17.
J. Wienke  A.S. Booij 《Thin solid films》2008,516(14):4508-4512
Indium-doped zinc oxide (ZnO:In) was spray-deposited on glass at a substrate temperature of 370 °C. The spray was generated by means of an ultrasonic nebulizer and using air as carrier gas. To the 0.2 mol/l zinc acetate solution indium acetate has been added as dopant, the [In]/[Zn] ratio was changed between 1 and 5 at.%. The mobility and resistivity have an optimum at an [In]/[Zn] ratio of 3 at.% with values of 2.9 mΩ cm and 12.5 cm2/Vs at a layer thickness of 1.3 μm. The application of a nucleation layer of 100 nm intrinsic ZnO (i-ZnO) on the glass substrate and the subsequent deposition of ZnO:In lead to a layer with significant improvement of the optical properties; the ultraviolet to visible (UV-VIS) light transmittance increased to above 80% in the visible light region. The new layer configuration caused a change in the layer morphology, which is visualised by Scanning Electron Microscope photographs, Energy Dispersive X-ray and X-ray Diffraction measurements. The electrical properties remained unchanged.  相似文献   

18.
It is reported on a reactive magnetron sputtering‐based deposition method to synthesize, at room temperature, photochromic nanocomposite thin films consisting of Ag nanoparticles sandwiched between nanoporous TiO2 layers. The fabrication process is compatible with large‐scale production and functional flexible substrates. It is shown that when TiO2 is deposited in the metallic mode, the formation of Ag metal nanoparticles induces localized surface plasmon resonances in the visible range and therefore the as‐deposited samples are colored. In contrast, when TiO2 is deposited in the compound mode, the trilayer samples are colorless because silver oxidizes during TiO2 deposition. It is demonstrated that the colorless samples can be colored under ultraviolet (UV) laser exposure at 244 nm due to the reduction of oxidized silver and the formation of metallic Ag nanoparticles. Moreover, irradiation at 647 nm wavelength of colored samples (as‐prepared or after UV exposure) gives rise to changes in the particle morphology that strongly modifies the film absorbance and results in a color transition from blue to orange. The choice of the irradiation wavelength allows controlling the color saturation of the sample up to the complete discoloration by using a visible laser at 488 nm. All these photochromic mechanisms are repeatable during cyclic processes.  相似文献   

19.
We investigated the photochromic and thermochromic behavior of amorphous MoO3 films prepared by thermal evaporation of MoO3 powder on glass and glass/CdS substrates. We used the cadmium sulfide as a carrier charge injector to produce higher color center concentrations in the MoO3 film. The semiconductor CdS (cadmium sulfide) film was synthesized using the chemical bath deposition technique. The glass/MoO3 and glass/CdS/MoO3 films were subjected to tungsten lamp (100 W) exposure times of 45 to 180 min to study the photochromic sensitivity of the films. To study the thermochromic properties, samples were thermally annealed at temperatures ranging from 100 to 250 °C during 2 h. X-ray diffraction studies show that the CdS films were polycrystalline, and the oxide films were amorphous. Optical absorption measurements showed the presence of an absorption band centered around 850 nm due to the formation of color centers. Concentrations of these were calculated using the Smakula equation. Results indicate that the addition of CdS films enhances the photochromic and thermochromic properties of MoO3. Photochromism is more effective than thermochromism in generating color centers when using CdS as a charge carrier.  相似文献   

20.
Catalytic photodegradation of organic contaminants by means of UV light has been demonstrated for gas sensors based on composites of TiO2-SnO2. Thin film resistive-type gas sensors of TiO2-SnO2 have been deposited at 350 °C by RF sputtering from a Ti-SnO2 target with varying surface ratio of SnO2/Ti. Photodegradation experiments of bromothymol blue by UV light have been performed by means of the optical spectrophotometry over the wavelength range extending from 300 nm to 600 nm. The influence of the UV illumination on the sensor response to 100-20,000 ppm of H2 has been investigated in situ on motor oil contaminated sensors. It has been found that sequential exposures to UV light lead to a partial recovery of the sensor signal to hydrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号