首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对传统TEG能量收集系统输入电压单一化与可用功率范围较窄的问题,提出了一种适用于极性反转热电能量收集的升降压DC-DC转换器。采用双极性输入升降压拓扑结构,能够自适应收集双极性输入热电能量,并增加储能升降压回路,有效拓宽了重载下可用功率范围,保证输出电压稳定性,并在轻负载时收集多余能量,显著提高轻载转换效率,保证系统续航能力。最大功率追踪方法采用结构简单、追踪效率较高的开路电压法。180 nm CMOS工艺仿真验证表明,所提出的能量收集系统轻重负载条件下转换效率均高于85%,最高转换效率为93.26%(VTEG=500 mV,RS=210 Ω),最大功率追踪效率达到99.52%(VTEG=-600 mV),电路最低工作输入电压为±25 mV,且重负载下1.8 V输出电压纹波小于30 mV。  相似文献   

2.
王世琛  张长春  张翼  张瑛  袁丰 《微电子学》2022,52(5):824-831
采用高压0.6μm CMOS工艺,设计了一种可以同时对压电、光电进行高效收集的多源能量收集电源管理芯片。该收集芯片由光电接口电路、压电接口电路和DC-DC电路等单元构成。光电接口电路中采用全局最大功率追踪电路,减少了阴影对太阳能板收集光能的影响,提高了最大功率追踪效率。DC-DC电路中,采用导通时间可调、频率可调的控制模式,在更宽的输入功率范围内实现更高效率的同时保持输出端较小的电压纹波。仿真结果表明,该收集芯片的整体平均动态电流为7.6μA,能量转换效率最高为91.2%。版图尺寸为9 623μm×3 655μm。  相似文献   

3.
针对蓄电池的储能问题,提出了一种多输入源且可扩充的高效充电电路和相应的控制算法。该充电电路主要由数字控制单元(DCU)、比较器、基于Dickson电荷泵结构的时钟倍压器(CVD)以及模拟开关组成,可以对多个独立能量采集器(EH)进行电能收集。该系统支持通过热插拔方式扩充任意数量的EH。提出的控制算法可以将从各个EH采集到的能量传递到能量储存装置而不会互相干扰。采用0.18 μm CMOS工艺对提出电路进行了具体实现。实验结果显示,相比类似的蓄电池充电系统,该充电电路的功耗最低,只需1.72μW的功耗,能够为三个输入源提供高达96.1%的最大充电效率。  相似文献   

4.
采用标准0.18 μm CMOS工艺,设计了一种可以同时高效收集压电、光电、热电、射频能量的多源能量收集芯片.该收集芯片由多种能源接口电路、可重构电荷泵和自适应控制电路等单元构成.可重构电荷泵中,通过调节电压转换倍率和开关工作频率来降低电荷再分配损耗,提高了转换效率,扩大了输入电压范围.自适应控制电路中,采用固定导通时...  相似文献   

5.
随着智能手机和可穿戴设备的普及,有限的电池容量限制了它们的进一步发展。降低功耗以"节流"不能从根本上解决问题,应从开源的角度来考虑。能量收集技术从外界环境或者人体收集能量为电池充电,为此问题提供了可行的解决方案。主要分析了能量收集系统中能量来源、调压电路、存储模块和最大功率点追踪算法几个方面的技术,指出提高转换效率是未来能量收集技术的主要发展方向。  相似文献   

6.
针对空间微弱射频能量收集,提出了一种宽带圆极化整流天线,其主要由射频能量接收天线和多频整流电路构成.为了获得宽频带特性,接收天线的辐射贴片采用对数周期交叉偶极子.同时,两对交叉偶极子均由环形的90°相位延迟线连接,且相互正交,从而实现天线的圆极化特性.多频整流电路由两个单阶电压倍压整流电路并联而成,为了提高整流电路的性能和效率,引入了具有两个枝节的新型阻抗匹配电路.仿真结果表明:接收天线的阻抗带宽和3 dB轴比带宽分别为1 100 MHz和350 MHz;多频整流电路的功率灵敏度达到-35 dBm,最大RF-DC整体转换效率可达76.5%.在辐射强度为6.02 μT,负载电阻为700 Ω时,测得整流天线负载端的输出电压约为139 mV,因此该整流天线适用于低功率射频能量收集应用.  相似文献   

7.
设计了一种两级低电压自启动电路,实现低输入电压条件下热电能量收集系统的自启动。在第一级自启动电路中引入一种新型堆叠式反相器,构成环形振荡器结构,在低供电电压下产生较大的振荡摆幅;第二级自启动电路由高幅值时钟产生电路与电感复用升压电路构成,进一步提高输出电压;由电压检测电路以及辅助电路构成的控制电路实现了第一级自启动向第二级自启动的转换,以及第二级自启动向主升压转换的过程。基于0.18 μm CMOS工艺设计该自启动电路,版图后仿真结果表明,在190 mV的TEG输入电压,以及11.8 μA的负载电流情况下,自启动电路可产生825 mV输出电压,转换效率可达到56.5%,实现能量收集系统的自启动功能,保证后级主升压电路的正常工作。  相似文献   

8.
提出了一种基于平均值控制的光伏系统最大功率追踪方式。该方案中的主要电路拓扑为BOOST功率变换器,其最大功率追踪器的控制部分由简单的硬件电路实现,并以电感中的平均电流作为控制对象.从而实现了最大功率点的有效追踪。  相似文献   

9.
多阶射频整流器在射频能量收集系统中起着交流转直流的作用。当射频输入功率偏离某一数值时,多阶射频整流器的功率转换效率(PCE)迅速下降。基于TSMC 0.18 μm CMOS工艺,提出一种最大功率点跟踪(MPPT)方法,使多阶射频整流器能够根据射频输入功率的大小自动配置阶数,从而在较宽的输入范围内保持较高的PCE。将该MPPT方法应用在3阶射频整流器上。结果表明,当工作频率为953 MHz、负载为50 kΩ、输入功率PIN∈(-26.5 dBm,-7.5 dBm)时,该3阶射频整流器的平均PCE可达65 %,相比传统3阶射频整流器,提升了约25%。  相似文献   

10.
针对传统射频能量采集系统中RF-DC转换效率偏低的问题,文中设计了一种在入射功率为5~10 dBm范围内转换效率整体大于50%的低功耗射频能量采集系统。该方法在单阶Villard整流倍压电路结构的基础上将倍压阶数增加到七阶,有效提高了系统的输出电压和输出功率,从而提升了系统的转换效率。通过ADS射频软件对系统进行了总体设计与仿真,当回波损耗S11参数满足设计要求后,将电路导入Altuim Designer中进行实物制作,在不同入射功率下测量系统负载电阻的输出电压,并计算得到对应功率下的整流转换效率。仿真结果与实验数据表明,系统在入射功率为5~10 dBm的范围内,整体整流转换效率可达50%以上,在10 dBm处得到最大转换效率为54.1%。与相同频点的射频能量采集系统相比,在设有同级别负载电阻和输入功率的条件下,文中所设计系统具有更高的输出电压,提升了RF-DC的转换效率。  相似文献   

11.
沈劲鹏  王新安  林科 《微电子学》2018,48(2):178-182, 196
基于动态阈值补偿技术,提出了一种适用于无源超高频RFID标签的高效率整流电路。该整流电路可以根据MOS管的工作状态对MOS管阈值电压进行动态补偿,使得MOS管同时具有低的导通电压和反向泄漏电流,从而实现高的功率转换效率。采用该整流电路的无源超高频RFID标签芯片在0.18 μm CMOS工艺下设计实现。测试结果表明,在驱动80 kΩ负载时,整流电路的功率转换效率最高可达53.7%。相比于传统整流电路,转换效率提高了约20%。  相似文献   

12.
光伏并网系统中的最大功率点追踪控制   总被引:2,自引:0,他引:2  
太阳能电池阵列输出特性具有强烈的非线性,为了提高系统的整体效率,一个重要的途径就是实时调整光伏电池的工作点,进行最大功率点跟踪(MPPT),使之始终工作在最大功率点附近。对并网系统的DC-DC电路原理和控制方法进行了研究,利用增量电导算法,通过脉宽调制的办法实现最大功率点的追踪,并用实验证实了其可行性和正确性。  相似文献   

13.
基于TSMC 180 nm工艺,设计了一款高效率低阈值整流电路。在传统差分输入交叉耦合整流电路的基础上,提出源极与衬底之间增加双PMOS对称辅助晶体管配合缓冲电容的改进结构,对整流晶体管进行阈值补偿。有效缓解了MOS管的衬底偏置效应,降低了整流电路的开启阈值电压,针对较低输入信号功率,提高了整流电路的功率转换效率(PCE)。同时将低阈值整流电路三级级联以提高输出电压。测试结果显示,在输入信号功率为-14 dBm@915 MHz时,三级级联低阈值整流电路实现了升压功能,能稳定输出1.2 V电压,峰值PCE约为71.32%。相较于传统结构,该低阈值整流电路更适合用于射频能量收集。  相似文献   

14.
设计了一种应用于能量收集领域的低功耗、超低电压DC-DC升压转换器。研究了转换器工作频率与功率和效率的关系,通过选择合适的脉冲宽度调制(PWM)频率来提高输出功率。通过适当提升转换器开关功率管的栅极电压,减小了晶体管的泄露电流,从而提高了输出电压。基于CMOS 65 nm工艺进行设计。仿真结果表明,提出的方案能提高弱能量转换效率。当输入电压为100 mV时,最大输出电压为1 000 mV。DC-DC升压转换器的输出功率为3.08 μW,转换器控制单元的功耗为697 nW,转换效率达到57.3%。  相似文献   

15.
根据压电元件的特性提出一种压电能量收集与管理电路。它包括一个基于电感的并联同步开关收集电路( P-SSHI )、一个控制电路和一个DC-DC电路。该P-SSHI电路只需要两个开关,仿真的结果显示其收集的能量相比传统的AC-DC电路提高5倍以上;DC-DC电路工作在电流断续模式下(DCM),这有利于降低功耗,提高轻载效率,且仿真结果的输出电压为3.3 V,电压精度为0.02%。这种压电能量收集与管理电路能够为微功率设备提供稳压。  相似文献   

16.
在无线功率传输系统中,接收天线整流电路的传输效率受输入功率、频率及负载变化的影响,为此设计了一种带有平衡微带耦合器的整流电路。仿真结果表明,当输入功率在8~15 dBm范围内时,该电路转换效率超过70%,最高效率为80%;转换效率在频率为2.25~2.61 GHz范围内超过70%;在负载为150~1 600 Ω范围内超过60%。与普通整流电路相比,本文提出的整流电路能够在更宽的输入功率、频带及负载范围实现高效率传输。  相似文献   

17.
《无线电工程》2018,(6):492-496
针对无线传感器系统高效率供电的问题,提出通过射频收集能量并转换为电能的方式将能量提供给无线传感器系统使用的方法。重点研究一款高效的环境WiFi能量收集系统,主要包括天线和整流电路优化设计2大部分。天线由2×2微带天线阵列组成,主要负责捕获环境中2.4 GHz WiFi信号,提高接收天线的灵敏度。整流电路设计基于Greinacher倍压电路,通过改变倍压电路参数或元器件的方式来提高转换效率即可以高效地转换能量。通过调整天线阵列和整流电路的参数,当输入功率在-35~-10 dBm时,能量收集系统的转换效率可以达到最佳状态。在特定的频带进行仿真测试,能量收集系统接收天线距离WiFi路由器2.3 m时,输出整流电压为1 089 mV。实验结果表明,能量收集系统可以有效地从周围的WiFi信号中收集能量。  相似文献   

18.
为了提高可调光发光二极管(LED)的灵活性和能量效率,提出了一种基于反馈控制的LED驱动器。该驱动电路采用了自适应电压调节技术,使线性电流调节器的功率损耗降到了最低。并设计了相应的基于电阻数字模拟转换器的数字控制机制,可用于馈送dc–dc转换器的模拟反馈输入。实验结果显示,提出的数字控制方法灵活性和稳定性较高,且能够有效控制调节速度。当输入电压为26 V时,LED驱动器能够提供较宽的5~40 V输出电压范围,获得了较大的灵活性。在输出电流为680 mA时,稳定状态下的精确度超过97.7%,频率为1 kHz且最短的接通持续时间为4 μs,系统的峰值效率达94.1%。  相似文献   

19.
本文针对两跳无线物联通信系统,对中继节点利用收集的能量采用功率分流法进行能量收集和信息传输算法进行了设计,其中算法设计是基于能效最大化的优化准则,能效函数定义为瞬时吞吐量与硬件电路总功耗的比值,中继节点利用源节点发送的信号进行能量收集,考虑EARTH计划中实际的功率转换效率和硬件电路损耗的功耗因子,推导了中继协同的无线物联系统能量收集和信息传输的最优功率分配方案的解析解,由于优化问题是非凸问题,为了解决该问题,本文利用高信噪比近似法并通过拉格朗日算法和Lambert W函数获得了优化问题的最优解,数值仿真验证了所提方案的正确性和有效性。   相似文献   

20.
许卫革  蒋和全 《微电子学》2017,47(3):330-335
设计了一种基于数字信号处理(DSP)的全数字控制两级级联大功率开关电源。在电路结构方面,采用了降压型和全桥式的变换器结构,其中,降压电路的占空比可随输出电压而调节,全桥电路能实现输入级与输出级的全隔离。在电路控制方面,采用数字比例-积分-微分(PID)控制技术,提升了系统的闭环控制速度和精度。该功率开关电源基于DSP的控制方法,构建了电源的控制系统。仿真及测试结果表明,基于DSP设计的开关电源具有稳定的性能和较高的效率,转换效率可达92%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号