首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
改进膨胀尾管悬挂器悬挂力技术研究   总被引:1,自引:0,他引:1  
为提高膨胀尾管悬挂器的悬挂力和膨胀过程中膨胀锥与膨胀本体的润滑性能,对膨胀尾管悬挂器的膨胀结构进行了改进,在膨胀本体外壁镶嵌金属块提高其悬挂能力;通过在膨胀本体内表面和膨胀锥表面预涂固体润滑涂层,提高其润滑性能,降低膨胀力。膨胀尾管悬挂器膨胀试验表明:膨胀本体镶嵌单组金属块的悬挂力达到200 kN,与未镶嵌金属块相比提高了3倍;预涂固体润滑涂层后膨胀力为268 kN,与未经过润滑相比降低了21%。这表明,在膨胀本体外壁镶嵌金属块可以提高膨胀尾管悬管挂器的悬挂润滑性能,在膨胀本体内表面和膨胀锥表面预涂固体润滑涂层的方法可以改善悬挂器的润滑性能。   相似文献   

2.
研制了一种提高零件表面耐磨性能的新型马氏体不锈钢电弧喷涂丝材,并通过高速电弧喷涂设备在Q235低碳钢板表面制备耐磨涂层。利用扫描电镜、X射线衍射仪、显微硬度仪和磨损试验机等设备研究了涂层的组织结构、结合强度、硬度及耐磨损性能,并分析其耐磨机理。研究结果表明,添加适量的V、Nb和稀土元素,可以促进碳化物硬质相颗粒的形成,有效地改善马氏体不锈钢涂层性能。试验所制备的涂层成形良好,组织均匀且结构致密,涂层结合强度达34.61MPa,涂层显微硬度值达538HV0.1(高于4Cr13涂层),耐磨性约为4Cr13涂层的1.70倍。  相似文献   

3.
目前评价膨胀管技术主要从膨胀质量上来考虑,忽略了对膨胀锥摩擦性能的分析。为此,根据弹塑性理论推导了膨胀管达到塑性变形时反作用于膨胀锥的表面压力和滑动摩擦力,再采用ANSYS有限元软件对膨胀锥膨胀过程进行仿真模拟,对比分析了微沟槽织构对膨胀锥摩擦性能的影响。研究结果表明:微沟槽织构应用到膨胀锥表面具有减小摩擦应力、减少摩擦副之间的接触面积等优点,可以有效减轻膨胀锥表面磨损,但应力集中更明显。研究结果可为微沟槽织构应用到膨胀锥上实现减摩耐磨提供理论参考。  相似文献   

4.
制备了一种新型无硫磷含氮杂环润滑添加剂月桂酸-N-(喹唑啉-4-酮)甲酯,通过元素分析、FT-IR、13C-NMR对其结构进行了表征,在万能摩擦磨损模拟试验机和环块模拟试验机上评价了其在液体石蜡中的摩擦磨损性能,还考察了其热稳定性能,并采用扫描电子显微镜和光学显微镜观察分析摩擦副磨损表面形貌.结果表明,所制备的月桂酸-N-(喹唑啉-4-酮)甲酯添加剂热稳定性良好,能提高液体石蜡的承载能力,降低工况的磨损和减小摩擦系数,有效提高基础油抗磨减摩性能.  相似文献   

5.
在设计接箍涂层成分时应充分考虑油管的硬度和表面特性,以及涂层与油管的摩擦与润滑特性。采用降低镍基涂层硬度,并在涂层中加入多组分润滑剂,收到降低涂层与油管之间的摩擦因数,减缓油管表面磨损的效果。结果表明,随着碳化铬的加入,涂层的硬度下降较为明显,总体上降低了20%;复合微量润滑剂LUB1和NLUB2的添加对涂层硬度变化的影响不大,但却是进一步降低涂层与油管材料表面摩擦因数的良好元素。胜利采油厂的ST1-1-81油井现场应用表明,自润滑涂层接箍具有较强的耐磨减磨性能,在保护抽油杆接箍的同时也保护了油管。  相似文献   

6.
研究了含无硫磷有机钨添加剂的润滑油润滑作用下离子渗氮轴承钢的摩擦磨损性能。利用四球摩擦磨损试验机系统地考察了渗氮轴承钢表面、基材表面与有机钨的交互作用规律,并使用X射线光电子能谱仪和扫描电子显微镜等表面分析技术分析摩擦反应膜的成分与化学态。结果表明,含无硫磷有机钨添加剂的润滑油润滑下,渗氮轴承钢表面的摩擦系数和磨斑直径小于基材表面的,摩擦系数最大降低了24.8%,磨斑直径最大减少了7.2%;相比基材表面,渗氮表面对有机碳链和有机钨具有更强的吸附作用,摩擦反应膜中W和C含量较高,使其表现出良好的减摩性能,摩擦反应膜中的WN使其表现出更优异的抗磨性能。  相似文献   

7.
 制备了含有不同质量分数空心微珠的锂基脂,考察了空心微珠对锂基脂理化指标的影响,在四球试验机和HQ-1高速摩擦磨损试验机上分别考察了含空心微珠锂基脂在点接触条件和线接触条件下的摩擦学性能,借助 SEM 等分析手段研究了空心微珠作为锂基脂添加剂的摩擦学机理。结果表明,添加空心微珠后锂基脂颜色发生变化,非工作锥入度随着空心微珠的增加略有上升,稠度小幅下降,分油量先降低后升高,对润滑脂的铜片腐蚀无明显影响;在相同的载荷和转速条件下,当空心微珠质量分数为0.5%时,在四球摩擦磨损试验机上锂基脂摩擦系数比基础脂降低约12%,而在HQ-1高速摩擦磨损试验机上摩擦系数比基础脂降低约30%;添加空心微珠能明显改善锂基润滑脂的抗磨减摩性能,在线接触摩擦副的润滑效果好于点接触摩擦副的,推测这是由于空心微珠在摩擦副间提高了实际接触面积,同时形成类似滚动和滑动相结合的摩擦形式。  相似文献   

8.
针对塔河油田深井侧钻井巴楚组和桑塔木组地层泥岩垮塌难题,优选φ139.7 mm实体膨胀管对复杂泥岩段进行机械封隔。根据弹塑性有限元理论,利用有限元数值模拟研究了φ139.7 mm实体膨胀管的膨胀特性,探讨了膨胀率、屈服强度、摩擦系数和膨胀锥锥角对膨胀力的影响规律。在塔河油田 TK6-463CH 井进行了实体膨胀管的现场施工应用,将该井膨胀锥锥角设计为10°,预测膨胀力为603~607 kN,与实际计算结果相比误差小于8%,表明该方法具有合理可行性,为深井侧钻井膨胀管设计及膨胀管施工提供了技术支持。   相似文献   

9.
采用化学方法制备了SnO2/ZnO复合纳米粒子,分别采用四球摩擦磨损试验机和环-块摩擦磨损试验机考察了其作为矿物油添加剂的抗磨减摩性能及对磨损表面的修复作用。用X-射线光电子能谱仪表征钢球磨斑所存在的元素及其价态;用扫描电子显微镜(SEM)和X-射线能谱仪(EDX)观察分析试块磨痕形貌和元素组成。探讨了复合纳米粒子添加剂的润滑作用机理。结果表明,SnO2/ZnO复合纳米粒子添加剂受压应力作用,可在试块磨痕表面形成纳米氧化物的保护膜,填平接触面并陷入基体,从而减轻粘着磨损,并对磨损表面起到良好的修复作用;在较低负荷下,保护膜中的纳米粒子起到“轴承”作用,而在较高的负荷下纳米粒子晶格产生滑移,甚至在磨痕表面形成合金层,使复合纳米粒子呈现出优良的抗磨减摩性能。  相似文献   

10.
采用化学方法制备了SnO2/ZnO复合纳米粒子,分别采用四球摩擦磨损试验机和环-块摩擦磨损试验机考察了其作为矿物油添加剂的抗磨减摩性能及对磨损表面的修复作用.用X-射线光电子能谱仪表征钢球磨斑所存在的元素及其价态;用扫描电子显微镜(SEM)和X-射线能谱仪(EDX)观察分析试块磨痕形貌和元素组成.探讨了复合纳米粒子添加剂的润滑作用机理.结果表明,SnO2/ZnO复合纳米粒子添加剂受压应力作用,可在试块磨痕表面形成纳米氧化物的保护膜,填平接触面并陷入基体,从而减轻粘着磨损,并对磨损表面起到良好的修复作用;在较低负荷下,保护膜中的纳米粒子起到"轴承"作用,而在较高的负荷下纳米粒子晶格产生滑移,甚至在磨痕表面形成合金层,使复合纳米粒子呈现出优良的抗磨减摩性能.  相似文献   

11.
采用化学方法制备了SiO2/CuO复合纳米粒子,分别采用四球摩擦磨损试验机和环-块摩擦磨损试验机考察了其作为矿物油添加剂的抗磨减摩性能及对磨损表面的修复作用。用PHI-5702型多功能X-射线光电子能谱仪表征钢球磨斑所存在的元素及其价态;用Quant200型扫描电子显微镜(SEM)和GENESIS型X-射线能谱仪(EDX)观察分析试块磨痕形貌和元素组成。并探讨了复合纳米粒子添加剂的润滑作用机理。结果表明,复合纳米微粒添加剂在摩擦过程中由于压应力的作用而沉积于磨损表面微观缺陷区域,从而对磨损表面起到良好的修复作用。另外,SiO2/CuO复合纳米微粒添加剂可在摩擦副接触表面吸附、沉积,并在接触区的高温高压下熔融铺展,形成低剪切强度的表面膜,从而减轻摩擦界面的粘着磨损,表现出良好的减摩抗磨性能。  相似文献   

12.
抗磨自修复纳米润滑添加剂   总被引:3,自引:0,他引:3  
纳米润滑添加剂可以降低摩擦系数,对磨损表面具有一定的修复功能。依据自修复原理结合纳米粒子的制备方法和特性,探讨了运用纳米润滑剂实现机械零件自修复的理论和途径,概述了纳米粒子作为自修复润滑添加剂的研究现状。  相似文献   

13.
《润滑油》2018,(6)
正确地评价润滑介质对轧制过程中摩擦磨损性能的影响,对确定符合使用要求的轧制液最优参数具有重要的指导作用。文章利用往复式摩擦磨损试验机,设计和现场对应的试验参数,通过钢球对铝板表面进行往复摩擦,模拟现场轧制工艺。更适合于评价轧制过程中水基轧制液在铝板表面的润滑性能,反映轧制液在轧制过程中和铝板表面的摩擦系数的变化,对现场轧制润滑性能的评价起到了指导作用。  相似文献   

14.
为了研究Fe-Al涂层的组织结构,并比较其与20#钢的耐磨性能,采用粉芯丝材和超音速电弧喷涂技术在20#钢基体上制备了Fe-Al涂层,采用扫描电镜分析了涂层的组织形貌,用X射线衍射分析了涂层的相结构,并对比研究了涂层与20#钢在干摩擦条件下的耐磨损性能。研究结果表明,采用超音速电弧喷涂制备的Fe-Al涂层组织致密,与基体结合良好,具有较高的硬度,在相同载荷和转速下,Fe-Al涂层的摩擦系数较小,具有优异的耐磨性。  相似文献   

15.
实验室制备了油溶性纳米Cu润滑油添加剂,将其以1%的质量分数分散于SJ15W/40润滑油中,并以不加该剂的SJ15W/40润滑油作为参比油,采用端面试验机考察其在钢一铜摩擦副体系中的摩擦磨损行为。结果表明,在试验所选定的摩擦时间、载荷、转速条件下,添加了油溶性纳米Cu的润滑体系的摩擦系数和磨损体积都小于参比油,具有优异的减摩抗磨性能。表面分析结果表明,油溶性纳米Cu添加剂能够降低摩擦表面的显微硬度,并显著改善磨损表面的形貌。在摩擦过程中,油溶性纳米Cu添加剂在摩擦面会形成低剪切的膜层,降低摩擦副间的横向剪切力并补偿了磨损,同时在一定程度上修复了磨损表面,表现出低摩擦、低磨损及改善磨损面形貌的性能特征。  相似文献   

16.
为了模拟评价油田钻井过程钻柱-套管和钻柱-岩石间摩擦阻力,采用润滑评价模拟装置LEM-4100,开发了润滑模拟评价法(LEM法),最优测试条件为:循环泵流量为5 000 m L/min,外部接触力ECF为222~423 N左右(气缸压力为69~110 k Pa),转速为90 r/min。采用LEM法分别测试了加入润滑剂Green Lube和润滑剂LUBE的钻井液中金属-金属和金属-滤饼摩擦系数,实验结果表明,Green Lube能有效的降低金属-金属和金属-滤饼摩擦系数;而LUBE的加量自1%增加至3%时,金属-金属摩擦系数先增大后降低,金属-滤饼摩擦系数几乎没有变化。金属-金属和金属-滤饼摩擦实验对比结果表明,与金属-金属摩擦相比,金属-滤饼间摩擦对于总的摩擦的贡献较大,应该在钻井液中添加能有效地降低金属滤饼间摩擦阻力的润滑剂,以降低钻井过程中钻柱的扭矩。  相似文献   

17.
SiO2/CuO复合纳米粒子添加剂的摩擦学和自修复性能研究   总被引:9,自引:0,他引:9  
采用化学方法制备了SiO2/CuO复合纳米粒子,分别采用四球摩擦磨损试验机和环一块摩擦磨损试验机考察了其作为矿物油添加剂的抗磨减摩性能及对磨损表面的修复作用。用PHI-5702型多功能X-射线光电子能谱仪表征钢球磨斑所存在的元素及其价态;用Quant200型扫描电子显微镜(SEM)和GENESIS型X-射线能谱仪(EDx)观察分析试块磨痕形貌和元素组成。并探讨了复合纳米粒子添加剂的润滑作用机理。结果表明,复合纳米微粒添加剂在摩擦过程中由于压应力的作用而沉积于磨损表面微观缺陷区域,从而对磨损表面起到良好的修复作用。另外,SiO2/CuO复合纳米微粒添加剂可在摩擦副接触表面吸附、沉积,并在接触区的高温高压下熔融铺展,形成低剪切强度的表面膜,从而减轻摩擦界面的粘着磨损,表现出良好的减摩抗磨性能。  相似文献   

18.
强抑制防塌钻井液在管3井的应用   总被引:1,自引:0,他引:1  
管3井是位于苏北盆地苏154区块的一口重点探井.该井上部地层蒙脱石含量高,遇水极易水化膨胀、分散,造浆严重;下部地层主要为伊蒙混层且夹杂层理发育的泥页岩,伊蒙混层的不均匀膨胀及泥页岩的剥蚀掉块,使该井极易发生井壁垮塌掉块、缩径、卡钻等复杂事故.针对该地层特点,分别复配了强抑制及防塌型钻井液.上部地层采用强抑制性钻井液,控制地层造浆.下部地层采用防塌型钻井液,有效地控制了地层的坍塌掉块.该套钻井液性能良好.同时使用好固控设备,降低钻井液的固相含量.现场应用表明,该钻井液具有良好的抑制防塌、润滑防卡及油气层保护能力,满足了钻井工程的需要.  相似文献   

19.
本文针对目前极压抗磨剂作用机理研究的诸多缺陷,提出了新的作用机理-填坑増承推想。现代设备的润滑状态基本处于斯氏润滑曲线的混合润滑区,润滑油主要使润滑状态沿混合润滑曲线下移,就能全面降低摩擦磨损,而负荷是影响各项摩擦磨损的主要因素。由此得出高性能载荷添加剂的研发思路是提高金属表面吸附力,加大2个表面间的真实接触面积,从而降低承压点的真实负荷,来提高承载能力。按此思路研制成功了性能良好的新型添加剂,并证明了机理的合理性和思路的可行性。  相似文献   

20.
在菜籽油(RO)分子中引入羟基,合成了一种新型的环境友好型润滑添加剂(HORO),并利用红外光谱对其主要官能团进行了鉴定。通过SRV摩擦磨损试验机考察了以菜籽油为基础油、以HORO为添加剂时对钢-镁摩擦副抗磨减摩性能的影响,同时通过X射线光电子能谱对镁合金磨斑表面进行分析,探讨了羟基化改性菜籽油润滑添加剂的抗磨减摩机理,并对生物降解性能进行了评定。结果表明:羟基化改性菜籽油润滑添加剂对钢—镁摩擦副具有优良的极压抗磨和减摩性能,2%的该种添加剂能使镁合金磨损体积从7.8 mm3降低到2 mm3,摩擦系数则从0.054降低到0.043;其润滑作用机理是由于长链菜籽油分子在镁合金摩擦表面进行吸附或发生摩擦化学反应形成了摩擦聚酯膜与镁的氧化膜共同组成的起抗磨作用的润滑膜;生物降解试验表明羟基化改性菜籽油具有优异的生物降解性能。由此推断,研制的羟基化改性菜籽油是一种性能优异的环境友好镁合金润滑添加剂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号