首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
用马来酸酐接枝聚丙烯(PP-g-MAH)、甲基丙烯酸甲酯和苯乙烯的混合物(MMA/St)两种相容剂对PP和废弃的PET织物(WF)复合材料界面进行改性,研究其力学性能、微观形态和热行为.结果表明:WF的加入使PP的拉伸强度下降,但改善了弯曲强度和模量,更使冲击强度大幅提升.在高WF填充量时,PP-g-MAH改性有助于改善弯曲性能和韧性,MMA/St混合物改性则对拉伸性能和弯曲性能更有利.挤出共混可使WF织物在PP中实现单纤维分散,PP-g-MAH和MMA/St改性改善了WF和PP的分散和界面粘结,MMA/St改性效果更优.这3类PP/WF复合材料的热稳定性都有所提高.  相似文献   

2.
采用碱处理、偶联剂处理以及碱–偶联剂复合处理对洋麻纤维进行表面改性,然后将其与聚丙烯(PP)纤维复合,采用非织造–模压工艺制备了PP/洋麻纤维复合材料。研究了上述3种表面改性方法对洋麻纤维强度及其复合材料弯曲与剪切性能的影响,并采用扫描电子显微镜(SEM)研究了洋麻纤维表面改性前后的形貌变化及其与PP基体之间的界面结合状况。结果表明,表面改性后洋麻纤维的拉伸强度均降低,但复合材料的弯曲强度及层间剪切强度均提高,表明这3种改性方法均提高了洋麻纤维与PP之间的界面结合强度;碱处理可去除纤维表面的果胶成分,使纤维束变得松散,使复合材料的弯曲强度及层间剪切强度分别较未表面改性时提高了21%和169%,但弯曲弹性模量降低了21%;偶联剂处理则使复合材料的弯曲强度,弯曲弹性模量和层间剪切强度较未表面改性时提高了23%,7%和160%;碱–偶联剂复合处理兼顾了碱处理和偶联剂处理的优点,使复合材料弯曲强度、弯曲弹性模量和层间剪切强度分别较未表面改性时提高了26%,18%和572%,综合性能最佳。SEM结果表明,碱–偶联剂复合处理后,复合材料中纤维与树脂之间的界面结合较好。  相似文献   

3.
采用碱液对硫酸钙晶须(CSW)进行处理,增加了CSW表面的羟基数量,然后用硅烷偶联剂KH570对羟基化的CSW进行表面改性,从而在CSW表面引入双键。将CSW加入到聚丙烯(PP)中,通过熔融共混法制备复合材料。在熔融共混过程中,通过过氧化二异丙苯(DCP)分解产生自由基,引发CSW表面的双键与PP基体之间发生化学反应,从而在CSW与基体之间产生化学键合,强化了CSW与基体之间的界面相互作用,制备了高性能的CSW增强PP复合材料。通过红外光谱(FTIR)表征了改性CSW的表面性能,分析了羟基化处理和DCP对改性CSW增强PP复合材料力学性能和热性能的影响。结果表明,CSW表面的羟基化和DCP所引发的键合反应能够显著改善CSW与PP之间的界面相容性,使复合材料的力学性能和热性能得到显著提升。  相似文献   

4.
中国科学院合肥物质科学研究院通过对超细微珠表面采用自行研发的改性处理剂和复合工艺,使空心微珠能均匀分散在聚合物基体中,微珠与基体具有良好的界面结合,从而获得综合性能高的聚合物/超细空心微珠复合材料。据了解,添加20%空心微珠的改性聚丙烯(PP)与纯PP相比,缺口冲击强度  相似文献   

5.
玄武岩纤维(BF)表面光滑且呈现化学惰性,在增强聚合物性能方面面临挑战。为改善BF与聚丙烯(PP)基体间的界面结合,提升BF增强PP的效能,采用电子束辐照和纳米二氧化硅(nano-SiO2)耦合改性BF表面。结果表明:在辐照过程中,BF表面羟基增多,BF对nano-SiO2的结合能力得到提升,BF表面形成更多PP结晶位点,使PP基体的结晶度从36.66%增至48.30%。在辐照过程中,BF表面更粗糙,BF与PP分子链的界面摩擦力得到提升。辐照剂量为400 kGy时,改性BF/PP的拉伸强度相比纯PP和未改性BF/PP分别提升29.2%和20.3%。辐照剂量为200 kGy时,改性BF/PP的热分解温度相比纯PP和未改性BF/PP分别提升6.4℃和2.2℃。  相似文献   

6.
采用小粒径玻璃微珠(OB)与聚丙烯(PP)熔融共混,研究了GB含量及表面处理对复合材料拉伸性能及介电性能的影响。研究结果表明,与未经表面改性的GB相比,经过偶联剂KH-550和EB-151处理的GB与PP复合后,其拉伸性能得到明显改善;且当GB含量为20%时,经过KH-550处理的GB/PP复合材料的拉伸强度、断裂伸长率和拉伸弹性模量比纯PP的分别提高了8.7%、109.6%和187.0%;复合材料的介电常数随GB含量的增加呈现增大的趋势,经过改性的复合材料的介电常数比未经改性的有所增加,而GB的含量和界面改性对介电损耗的影响不大。  相似文献   

7.
研究了表面处理剂(钛酸酯和硅烷偶联剂)和原位聚合方法对聚丙烯/微米氢氧化镁(MH)复合材料的力学性能及流变性能的影响。采用DSC、SEM和毛细管流变仪对PP/MH(80/20)复合材料的性能进行了研究。结果表明:原位聚合改性后的微米MH与PP基体间的界面黏结力得到了加强,复合材料的冲击强度较填充未改性MH的复合材料提高了26.4 %。在PP基体中添加聚合物包覆改性微米MH粒子的复合材料熔体流动速率较纯PP上升了64 %。在相同剪切速率下,填充聚合物包覆改性MH的复合材料熔体表观黏度明显低于填充未改性微米MH的复合材料,表明聚合物包覆改性后的MH降低了其对PP熔体流动的阻碍作用,改善了PP/MH复合材料的流动性能。  相似文献   

8.
以硅烷接枝乙烯-1-辛烯共聚物(POE-g-Si)为增容剂,制备了聚丙烯(PP)/POE-g-Si/木粉复合材料。研究了POE-g-Si对PP/木粉复合材料的晶态结构、界面相容性、动态力学性能及力学性能的影响。加入POE-g-Si有效改善了复合材料的界面相容性;PP中β晶型消失,结晶度由71.50%降至61.91%,木粉与基体界面处出现横晶;α,β转变峰均增强;复合材料拉伸强度、抗冲击性能均明显提高。  相似文献   

9.
以有机硅改性EP(环氧树脂)为聚合物基体、经强碱处理及硅烷偶联剂表面改性的MWCNTs(多壁碳纳米管)为功能性填料,采用原位聚合法制备了MWCNTs/有机硅改性EP复合材料。研究结果表明:经表面改性处理后的MWCNTs可在聚合物基体中良好分散,当w(MWCNTs)=0.6%(相对于有机硅改性EP质量而言)时,复合材料的拉伸强度(86.03 MPa)、弯曲强度(154.07 MPa)相对最大,并且比表面未改性的MWCNTs体系分别提高了17.12%、8.19%。  相似文献   

10.
PP/核桃壳粉复合材料的制备与性能研究   总被引:1,自引:0,他引:1  
以核桃壳粉(WSP)为填料,采用熔融共混法制备了聚丙烯(PP)/WSP复合材料。研究了聚丙烯接枝马来酸酐(PP-g-MAH)界面相容剂、三元乙丙橡胶(EPDM)弹性体等对PP/WSP复合材料力学性能和热稳定性的影响。结果表明:PP-g-MAH界面相容剂能够改善WSP与PP的界面相容性,增强界面黏结强度,提高复合材料的力学性能,添加7%的PP-g-MAH可以使WSP用量为50%的PP/WSP复合材料的拉伸强度提高49.5%,弯曲强度提高52.9%;而添加EPDM弹性体的PP/WSP复合材料的韧性显著改善。WSP对聚合物基体的热稳定性有一定促进作用。  相似文献   

11.
纳米级TiO2粒子改性及其填充聚丙烯的研究   总被引:2,自引:0,他引:2  
分别用油酸钠、氯化聚丙烯及甲基丙烯酸甲酯对纳米级TiO2粒子进行表面处理或表面接枝改性。通过熔融共混工艺制备了PP/纳米TiO2复合材料,并进行了力学测试和结构表征。结果表明,经过表面处理的纳米TiO2粒子可以较均匀地分散在聚丙烯中,粒子与基体界面结合良好,填充聚丙烯形成的复合材料的拉伸强度、冲击强度都有所提高。  相似文献   

12.
加工时间对木粉/PP复合材料结构与性能的影响   总被引:1,自引:0,他引:1  
胡圣飞  陈祥星  赵敏  李慧 《塑料工业》2012,40(7):63-66,107
以硅烷接枝乙烯-辛烯共聚物(POE-g-Si)为增容剂,通过X射线衍射(XRD)、电子扫描显微镜(SEM)、动态力学分析(DMA)研究了加工时间对木粉/POE-g-Si/PP复合材料晶态结构、动态力学性能及界面形态的影响。结果表明,随着加工时间的延长,由于剪切作用,处于界面处的相容剂POE-g-Si向PP基体树脂渗透,界面层厚度变小,且POE-g-Si粒径也随之变小,分布也更加均匀;而木粉/POE-g-Si/PP复合材料的晶态结构却无变化;同时,木粉/POE-g-Si/PP复合材料的阻尼性能也随之增强,这主要取决于木粉与聚合物基体间的界面作用力的提高。  相似文献   

13.
以果壳和木屑为原材料,制备成不同目数果壳粉和木粉,并分别对果壳粉和木粉表面进行改性。本实验采用表面接枝马来酸酐(MAH)的果壳粉和木粉处理方法,将MAH改性后的木粉和果壳粉填加到PVC树脂基体中,通过改变MAH的用量,比较了果壳粉和木粉/PVC复合材料拉伸,抗弯性能的变化情况。复合材料的抗弯强度和拉伸强度明显提高,果壳粉和木粉填充复合材料的弯曲强度分别达到68.12 MPa和80.05 MPa,达到最大值。果壳粉与PVC的界面连接得到改善。实验结果表明:改性后的果壳粉/复合材料的拉伸性能和抗弯性能明显提高。  相似文献   

14.
实验采用熔融共混-模压法制备了废弃玻璃钢(WGFRP)/聚丙烯(PP)复合材料。研究了硅烷偶联剂KH550表面改性WGFRP、改性聚丙烯(MAPP)添加量以及乙烯-辛烯共聚物(POE)的使用对WGFRP/PP复合材料性能的影响。实验结果表明,KH-550表面改性WGFRP能使复合材料性能小幅度提高,MAPP可使复合材料的拉伸和弯曲强度分别提高28.63%、20.13%,添加POE后,复合材料的断裂伸长率和冲击强度增幅分别达到152.36%、45.43%。扫描电镜图片显示,多种改性剂的加入有效改善了WGFRP和PP的界面粘合程度,宏观表现为复合材料性能提高。  相似文献   

15.
采用硅烷偶联剂KH560表面改性废胶粉(WRP)、环氧树脂E44改性滑石粉(Talc),以尼龙(PA)66/玻璃纤维(GF)复合材料为基体,制备了WRP,Talc及两者协同改性的PA66/GF复合材料,研究了WRP,Talc及两者协同作用对复合材料力学性能、结晶性能和热稳定性能的影响。结果表明,当3份WRP经过1份KH560处理后,其与PA66/GF基体间的界面粘结性明显得到改善,其改性的复合材料弯曲强度和冲击强度最高,分别比PA66/GF基体提高了11.09%和2.05%。当1份Talc经过3份E44处理后,其在基体中具有良好的分散性,改性的复合材料弯曲强度和冲击强度达到最大,分别比基体材料提高了13.89%和8.42%。WRP与Talc均能促进复合材料的结晶,但两者协同作用对复合材料结晶性能没有明显的影响。采用1份KH560处理的3份WRP协同3份E44处理的1份Talc对复合材料进行改性,可使弯曲强度和冲击强度相比基体分别提高16.97%和6.25%,且使复合材料具有良好的热稳定性能,达到了低成本WRP和Talc改性制备高性能橡塑复合材料的目的。  相似文献   

16.
通过培养木醋杆菌,使其所产细菌纤维素"生长"于木质纤维表面和表面的缝隙处,从而实现对木粉的表面改性。采用挤出混炼的方法制备了聚乳酸/木粉复合材料。结果表明,木粉经细菌纤维素改性后,木质纤维与树脂的界面结合情况明显改观,聚乳酸/木粉复合材料的力学性能得到改善。与未处理时相比,材料的拉伸强度、弯曲强度、冲击强度分别增加了27.05%,24.11%,39.13%。  相似文献   

17.
主要研究了木粉表面甲基化改性和增容剂马来酸酐接枝聚乙烯(PE-g-MAH)对木粉/高密度聚乙烯(HDPE)复合材料力学性能的协同作用。木粉经表面甲基化处理后,与10%PE-g-MAH协同使用,甲基化木粉/PE-g-MAH/HDPE复合材料的拉伸强度、弯曲强度和冲击强度均明显高于未改性木粉/PE-g-MAH/HDPE复合材料,其原因在于在PE-g-MAH的作用下,甲基化木粉在聚合物基体中分布更加均匀,两者的界面作用力更高,即甲基化木粉和PE-g-MAH对提升木粉/HDPE复合材料的力学性能具有良好的协同作用。  相似文献   

18.
表面处理对TiO_2/PP复合材料界面的影响   总被引:4,自引:0,他引:4  
采用硅烷偶联剂对TiO2 颗粒进行表面处理改性并与聚丙烯 (PP)共混填充。通过红外光谱分析和扫描电镜分析研究了表面处理对TiO2 /PP界面结合的改性效果 ,研究了表面处理对TiO2 /PP复合材料的流动性能的影响。研究结果表明 ,表面处理可以明显改善复合材料的流动性能、改善复合材料的界面结合效果  相似文献   

19.
利用多巴胺在固体表面氧化自聚合的特性,通过一种简便易行的方式制备了聚多巴胺表面修饰的纳米二氧化硅改性粒子PD-SiO_2。红外光谱测试表明,聚多巴胺在没有破坏纳米二氧化硅结构的前提下成功黏附其表面。将改性粒子PD-SiO_2与聚丙烯/乙烯-辛烯共聚物(PP/POE)通过熔融共混的方式制备了具有亲水效果的高性能聚丙烯复合材料,并利用红外光谱分析、力学性能、接触角、DSC和扫描电镜(SEM)测试分别研究了复合材料的结构、力学性能、表界面性能、结晶性能和断面形貌。结果表面,PD-SiO_2的加入起到了明显的刚性粒子增强效果,提高了材料的刚性和韧性,提高了PP/POE复合材料的亲水性,降低了PP/POE复合材料的结晶温度,提高了结晶度。  相似文献   

20.
通过熔融共混的方法制备了聚丙烯/纳米二氧化硅(PP/Nano-SiO2)复合材料,利用微机控制电子万能试验机、液晶式摆锤冲击试验机、差示扫描量热仪、毛细管流变仪和扫描电子显微镜研究Nano-SiO2粉体表面改性前后和添加适量增容剂对PP/Nano-SiO2复合材料性能的影响。结果表明:Nano-SiO2粉体对基体PP有异相成核作用,使PP/Nano-SiO2复合材料结晶放热峰明显向高温方向移动;在经偶联剂(KH560)表面改性并添加适量增容剂(PP-g-MAH)协同作用下,Nano-SiO2粉体与PP两相界面的相互作用增强,PP/Nano-SiO2复合材料的相容性提高;冲击强度提高76%,剪切应力随着剪切速率的增大而提高,表观黏度随剪切速率和温度的提高而逐渐降低,改善了复合材料的加工性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号