首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
CuxNi1−xO electrochromic thin films were prepared by sol–gel dip coating and characterized by XRD, UV–vis absorption and electrochromic test. XRD results show that the structure of the Cux Ni1−xO thin films is still in cubic NiO structure. UV–vis absorption spectra show that the absorption edges of the CuxNi1−xO films can be tuned from 335 nm (x = 0) to 550 nm (x = 0.3), and the transmittance of the colored films decrease as the content of Cu increases. CuxNi1−xO films show good electrochromic behavior, both the coloring and bleaching time for a Cu0.2Ni0.8O film were less than 1 s, with a variation of transmittance up to 75% at the wavelength of 632.8 nm.  相似文献   

2.
By sulfurization of E---B evaporated precursors, CZTS(Cu2ZnSnS4) films could be prepared successfully. This semiconductor does not consist of any rare-metal such as In. The X-ray diffraction pattern of CZTS thin films showed that these films had a stannite structure. This study estimated the optical band gap energy as 1.45 eV. The optical absorption coefficient was in the order of 104cm−1. The resistivity was in the the order of 104 Ω cm and the conduction type was p-type. Fabricated solar cells, Al/ZnO/CdS/CZTS/Mo/Soda Lime Glass, showed an open-circuit voltage up to 400 mV.  相似文献   

3.
Thin film deposition of Cu2O and application for solar cells   总被引:1,自引:0,他引:1  
Deposition conditions of cuprous oxide (Cu2O) thin films on glass substrates and nitrogen doping into Cu2O were studied by using reactive radio-frequency magnetron sputtering method. The effects of defect passivation by crown-ether cyanide treatment, which simply involves immersion in KCN solutions containing 18-crown-6 followed by rinse, were also studied. By the crown-ether cyanide treatment, the luminescence intensity due to the near-band-edge emission of Cu2O at around 680 nm was enhanced, and the hole density was increased from 1016 to 1017 cm−3. Finally, polycrystalline p-Cu2O/n-ZnO heterojunctions were grown for use in solar cells. Two deposition sequences were studied, ZnO deposited on Cu2O and Cu2O deposited on ZnO. It was found that the crystallographic orientation and current–voltage characteristics of the heterojunction were significantly influenced by the deposition sequence, both being far superior for the heterojunction with structure Cu2O on ZnO than for the inverse structure. We successfully obtained a photoresponse for the first time in the deposited thin film of Cu2O/ZnO.  相似文献   

4.
Zn3P2 semiconductor thin films were prepared by electrodeposition technique form aqueous solutions. The deposition mechanism was investigated by cyclic voltammetry technique. Crystal structure, morphology and composition of as deposited and annealed Zn3P2 thin films grown on SnO2/glass substrates were determined by X-ray diffraction, scanning electron microscopy, and energy dispersive X-ray analysis. X-ray diffraction data indicated the formation of Zn3P2 as the predominant phase for both as-deposited and annealed films. The compositions of the deposited films were controlled by the bath temperature, deposition potential and Zn/P ratio in the solution.The dark current–voltage measurements of SnO2/Zn3P2/C devices indicated a rectifying behavior and a reverse saturation current density of 1.7×10−7 A/cm2, which is in good accordance with that obtained from films prepared using vacuum technique. Also, the capacitance–voltage measurements showed that the number of interface states and the built in potential are in the order of 5×10−9 cm−3 and 0.85 V, respectively. These preliminary results for Zn3P2 thin films reveal that, this semiconductor material can be used for solar cell applications.  相似文献   

5.
n-Cu2O photoelectrodes are obtained by immersing a copper plate in a CuSO4(10−3 M) and HCl (10−3 M) solutions. Samples are characterized with XRD and SEM measurements. It is found that Cu2+ ions and the copper substrate are essential to obtain n-type photoresponses from Cu2O. Photocurrent action spectra are investigated with various Cu2O amounts formed on the copper substrate, made from two different methods. Photoluminescence (PL) measurements of the samples prepared by the two methods are examined. Time development of the photocurrent is investigated in KI(10−2 M)+I2 (10−4 M) and trisodium citrate solutions.  相似文献   

6.
Aluminum-doped cadmium oxide (CdO:Al) thin films are deposited on glass substrates by the sol–gel dip-coating method, taking cadmium acetate dihydrate as the precursor material. Aluminum nitrate has been taken as a source of Al-dopant. XRD pattern reveals the good crystallinity of CdO thin films. SEM micrograph showed the presence of faceted crystallites. Optical study shows 40–85% transparency with a bandgap value lying in the range 2.76–2.52 eV, depending upon the Al content in the films. Optimum percentage of Al was 5.22 for a maximum room temperature conductivity of 2.81×103 (Ω cm)−1. Hall measurement confirmed that the material is of n-type, with mobility and carrier concentrations lying in the range 413–14.7 cm2/V s, and 3.4×1019–8.11×1020 cm−3, when percentage of Al varies in the range 1.32–7.24.  相似文献   

7.
We have investigated the electrochemical deposition of modulated thin films based on the CuxIn2−xSe2 system. CuInSe2 is a leading alternative to silicon for use in thin film photovoltaic solar cells due to its optical absorption and electrical characteristics. Alternating layers of two different compositions based on the CuxIn2−xSe2 system were potentiostatically deposited. These nanometer-scale layers are used to form reduced-dimensionality structures such as superlattices that can be used in concentrator solar cells. We have used X-ray diffraction, energy-dispersive spectroscopy, and scanning tunneling microscopy to characterize our asdeposited thin films. The ability of the scanning tunneling microscope to resolve the individual nanoscale layers of our multilayered thin films is shown and is used to determine modulation wavelengths.  相似文献   

8.
The n-CdZn(S1−xSex) and p-CuIn(S1−xSex)2 thin films have been grown by the solution growth technique (SGT) on glass substrates. Also the heterojunction (p–n) based on n-CdZn (S1−xSex)2 and p-CuIn (S1−xSex)2 thin films fabricated by same technique. The n-CdZn(S1−xSex)2 thin film has been used as a window material which reduced the lattice mismatch problem at the junction with CuIn (S1−xSex)2 thin film as an absorber layer for stable solar cell preparation. Elemental analysis of the n-CdZn (S1−xSex)2 and p-CuIn(S1−xSex)2 thin films was confirmed by energy-dispersive analysis of X-ray (EDAX). The structural and optical properties were changed with respect to composition ‘x’ values. The best results of these parameters were obtained at x=0.5 composition. The uniform morphology of each film as well as the continuous smooth thickness deposition onto the glass substrates was confirmed by SEM study. The optical band gaps were determined from transmittance spectra in the range of 350–1000 nm. These values are 1.22 and 2.39 eV for CuIn(S0.5Se0.5)2 and CdZn(S0.5Se0.5)2 thin films, respectively. JV characteristic was measured for the n-CdZn(S1−xSex)2/p-CuIn(S1−xSex)2 heterojunction thin films under light illumination. The device parameters Voc=474.4 mV, Jsc=13.21 mA/cm2, FF=47.8% and η=3.5% under an illumination of 85 mW/cm2 on a cell active area of 1 cm2 have been calculated for solar cell fabrication. The JV characteristic of the device under dark condition was also studied and the ideality factor was calculated which is equal to 1.9 for n-CdZn(S0.5Se0.5)2/p-CuIn(S0.5Se0.5)2 heterojunction thin films.  相似文献   

9.
ZnxCd1−xO thin films were prepared on glass substrates by spray pyrolysis technique. The precursor solutions were obtained by varying the concentration of Zn(NO3)2·6H2O and Cd(NO3)2·4H2O in bi-distilled water. The structural properties have been studied using X-ray diffraction spectra. All the structures include the basic compounds, i.e. ZnO and CdO. The orientation and the crystalline phases of the deposited films were specified. With the addition of Zn to the precursor solution, we can observe the preferential orientation of the CdO in the [2 0 0] direction. The electrical measurements were performed using method of four contacts. Thin films transmittances, in the 1.5–4.3 eV range, for different compositions have been measured and the optical gaps have been determined. The variations are explained considering the gaps of the two pure films. The influence of increased Cd concentration in the films on the structural, electrical and optical properties is investigated in this study.  相似文献   

10.
Semiconducting cuprous oxide films were prepared by electrodeposition onto commercial conducting glass coated with indium tin oxide deposited by spraying technique. The cuprous oxide (Cu2O) films were deposited using a galvanostatic method from an alkaline CuSO4 bath containing lactic acid and sodium hydroxide at a temperature of 60°C. The film's thickness was about 4–6 μm. This paper includes discussion for Cu2O films fabrication, scanning electron microscopy and X-ray diffractometry studies, optical properties and experimental results of solar cells. The values of the open circuit voltage Voc of 340 mV and the short circuit current density Isc of 245 μA/cm2 for ITO/Cu2O solar cell were obtained by depositing graphite paste on the rear of the Cu2O layer. It should be stressed that these cells exhibited photovoltaic properties after heat treatment of the films for 3 h at 130°C. An electrodeposited layer of Cu2O offers wider possibilites for application and production of low cost cells, both in metal–semiconductor and hetero-junction cell structures, hence the need to improve the photovoltaic properties of the cells.  相似文献   

11.
CdO/c-Si solar cells have been made by depositing CdO thin films on p-type monocrystalline silicon substrate by means of the rapid thermal oxidation (RTO) technique using a halogen lamp at 350 °C/45 s in static air. Results on structural, optical, and electrical properties of grown CdO films are reported. The electrical and photovoltaic properties of CdO/Si solar cells are examined. Under AM1 illumination condition, the cell shows an open circuit voltage (VOC) of 500 mV, a short circuit current density (JSC) of 27.5 mA/cm2, a fill factor (FF) of 60%, and a conversion efficiency (η) of 8.84% without using frontal grid contacts and/or post-deposition annealing. Furthermore, the stability of solar cells characteristics is tested.  相似文献   

12.
Radiation damages due to 8 MeV electron irradiation in electrical properties of CuInSe2 thin films have been investigated. The n-type CuInSe2 films in which the carrier concentration was about 3×1016 cm−3, were epitaxially grown on a GaAs(0 0 1) substrate by RF diode sputtering. No significant change in the electrical properties was observed under the electron fluence <3×1016 e cm−2. As the electron fluence exceeded 1017 e cm−2, both the carrier concentration and Hall mobility slightly decreased. The carrier removal rate was estimated to be about 0.8 cm−1, which is slightly lower than that of III–V compound materials.  相似文献   

13.
Nb-doped TiO2 films have been fabricated by RF magnetron sputtering as protective material for transparent-conducting oxide (TCO) films used in Si thin film solar cells. It is found that TiO2 has higher resistance against hydrogen radical exposure, utilizing the hot-wire CVD (catalytic CVD) apparatus, compared with SnO2 and ZnO. Further, the minimum thickness of TiO2 film as protective material for TCO was experimentally investigated. Electrical conductivity of TiO2 in the as-deposited film is found to be 10−6 S/cm due to the Nb doping. Higher conductivity of 10−2 S/cm is achieved in thermally annealed films. Nitrogen treatments of Nb-doped TiO2 film have been also performed for improvements of optical and electric properties of the film. The electrical conductivity becomes 4.5×10−2 S/cm by N2 annealing of TiO2 films at 500 °C for 30 min. It is found that the refractive index n of Nb-doped TiO2 films can be controlled by nitrogen doping (from n=2.2 to 2.5 at λ = 550 nm) using N2 as a reactive gas. The controllability of n implies a better optical matching at the TCO/p-layer interface in Si thin film solar cells.  相似文献   

14.
A simple spray method for the preparation of pyrite (FeS2) thin films has been studied using FeSO4 and (NH4)2Sx as precursors for Fe and S, respectively. Aqueous solutions of these precursors are sprayed alternately onto a substrate heated up to 120°C. Although Fe–S compounds including pyrite are formed on the substrate by the spraying, sulfurization of deposited films is needed to convert other phases such as FeS or marcasite into pyrite. A single-phase pyrite film is obtained after the sulfurization in a H2S atmosphere at around 500°C for 30 min. All pyrite films prepared show p-type conduction. They have a carrier concentration (p) in the range 1016–1020 cm−3 and a Hall mobility (μH) in the range 200–1 cm2/V s. The best electrical properties (p=7×1016 cm−3, μH=210 cm2/V s) for a pyrite film prepared here show the excellence of this method. The use of a lower concentration FeSO4 solution is found to enhance grain growth of pyrite crystals and also to improve electrical properties of pyrite films.  相似文献   

15.
Polycrystalline ZnO : Al thin films have been prepared by the (Sol–gel) chemical deposition method. The ZnO : Al thin films are very transparent (90%) in the near UV, VIS and IR regions. The films are oriented along the c-axis ([0 0 2] direction) in the hexagonal structure. It is known that pure ZnO thin films are not chemically stable in corrosive media, but aluminium stabilizes the ZnO system and increases its electrical conductivity. Finally, the ZnO : Al thin films are reasonably stable under storage in air and in reactive atmospheres like O2, H2O, H2 or in weak acids. Dark- and photo-conductivity of the ZnO : Al films are very high (1–100 Ω−1 cm−1), so that they can be used as transparent conductors in solar cells or in electrochromic devices.  相似文献   

16.
High-energy proton irradiation (380 keV and 1 MeV) on the electrical properties of CuInSe2 (CIS) thin films has been investigated. The samples were epitaxially grown on GaAs (0 0 1) substrates by Radio Frequency sputtering. As the proton fluence exceeded 1×1013 cm−2, the carrier concentration and mobility of the CIS thin films were decreased. The carrier removal rate with proton fluence was estimated to be about 1000 cm−1. The electrical properties of CIS thin films before and after irradiation were studied between 80 and 300 K. From the temperature dependence of the carrier concentration in CIS thin films, we found ND=9.5×1016 cm−3, NA=3.7×1016 cm−3 and ED=21 meV from the fitting to the experimental data on the basis of the charge balance equation. After irradiation, a defect level was created, and NT=1×1017 cm−3 for a fluence of 3×1013 cm−2, NT=5.7×1017 cm−3 for a fluence of 1×1014 cm−2 and ET=95 meV were also obtained from the same fitting. The new defect, which acted as an electron trap, was due to proton irradiation, and the defect density was increased with proton fluence.  相似文献   

17.
Polycrystalline CuIn0.7Ga0.3Se2 thin films were prepared on soda-lime glass substrates using pulsed laser deposition (PLD) with various process parameters such as laser energy, repetition rate and substrate temperature. It was confirmed that there existed a limited laser energy, i.e. less than 300 mJ, to get phase pure CIGS thin films at room temperature. Particularly, even at room temperature, distinct crystalline CIGS phase was observed in the films. Crystallinity of the films improved with increasing substrate temperature as evidenced by the decrease of FWHM from 0.65° to 0.54°. Slightly Cu-rich surface with Cu2−xSe phase was confirmed to exist by Raman spectra, depending on substrate temperature. Improved electrical properties, i.e., carrier concentration of ∼1018 cm−3 and resistivity of 10−1 Ω cm at higher substrate temperature for the optimal CIGS films are assumed to be induced by the potential contributions from highly crystallized thin films, existence of Cu2−xSe phase and diffusion of Na from substrates to films.  相似文献   

18.
Metal organic vapor-phase epitaxy (MOVPE) is used to prepare epitaxial reference films and solar cells based on CuGaSe2. Room temperature Hall measurements are performed on epitaxial CuGaSe2. Conductivities up to 0.7 (Ω cm)−1 were obtained. Highest mobilities of 270 cm2/Vs are observed for near stoichiometric slightly Ga-rich films. Net charge carrier concentration is higher in the Cu-rich grown films than in the Ga-rich films. Solar cells with epitaxial absorber are prepared that reach efficiencies of 3.3%. First polycrystalline solar cells are grown on Mo/glass at reduced substrate temperatures. Under AM1.5 illumination open-circuit voltages up to 740 mV and efficiencies of 2.0% are obtained.  相似文献   

19.
CuInSe2 thin films were formed from the selenization of co-sputtered Cu–In alloy layers. These layers consisted of only two phases, CuIn2 and Cu11In9, over broad Cu–In composition ratio. The concentration of Cu11In9 phase increased by varying the composition from In-rich to Cu-rich. The composition of co-sputtered Cu–In alloy layers was linearly dependent on the sputtering power of Cu and In targets. The metallic layers were selenized either at a low pressure of 10 mTorr or at 1 atm Ar. A small number of Cu–Se and In–Se compounds were observed during the early stage of selenization and single-phase CuInSe2 was more easily formed in vacuum than at 1 atm Ar. Therefore, CuInSe2 films selenized in vacuum showed smoother surface and denser microstructure than those selenized at 1 atm. The results showed that CuInSe2 films selenized in vacuum had good properties suitable for a solar cell.  相似文献   

20.
High quality epitaxial indium zinc oxide (heavily indium oxide doped) (epi-n-IZO) thin films were optimized by laser-molecular beam epitaxy (L-MBE) i.e., pulsed laser deposition (PLD) technique for fabricating novel iso- and hetero-semiconductor–insulator–semiconductor (SIS) type solar cells using Johnson Matthey “specpure”- grade 90% In2O3 mixed 10% ZnO (as commercial indium tin oxide (ITO) composition) pellets. The effects of substrate temperatures, substrates and heavy indium oxide incorporation on IZO thin film growth, opto-electronic properties with 1 0 0 silicon (Si), gallium arsenide (GaAs) and indium phosphide (InP) wafers were studied. As well as the feasibility of developing some novel models of iso- and hetero-SIS type solar cells using epi-IZO thin films as transparent conducting oxides (TCOs) and 1 0 0 oriented Si, GaAs and InP wafers as base substrates was also studied simultaneously. The optimized films were highly oriented, uniform, single crystalline approachment, nano-crystalline, anti-reflective (AR) and epitaxially lattice matched with 1 0 0 Si, GaAs and InP wafers without any buffer layers. The optical transmission T (max) 95% is broader and absolute rivals that of other TCOs such as ITO. The highest conductivity observed is σ=0.47×103 Ω−1 cm−1 (n-type), carrier density n=0.168×1020 cm−3 and mobility μ=123 cm2/V s. From opto-electronic characterizations, the solar cell characteristics and feasibilities of fabricating respective epi-n-TCO/1 0 0 wafer SIS type solar cells were confirmed. Also, the essential parameters of these cells were calculated and tabulated. We hope that these data be helpful either as a scientific or technical basis in semiconductor processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号