首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have identified and characterized mutants of the yeast Yarrowia lipolytica that are deficient in protein secretion, in the ability to undergo dimorphic transition from the yeast to the mycelial form, and in peroxisome biogenesis. Mutations in the SEC238, SRP54, PEX1, PEX2, PEX6, and PEX9 genes affect protein secretion, prevent the exit of the precursor form of alkaline extracellular protease from the endoplasmic reticulum, and compromise peroxisome biogenesis. The mutants sec238A, srp54KO, pex2KO, pex6KO, and pex9KO are also deficient in the dimorphic transition from the yeast to the mycelial form and are affected in the export of only plasma membrane and cell wall-associated proteins specific for the mycelial form. Mutations in the SEC238, SRP54, PEX1, and PEX6 genes prevent or significantly delay the exit of two peroxisomal membrane proteins, Pex2p and Pex16p, from the endoplasmic reticulum en route to the peroxisomal membrane. Mutations in the PEX5, PEX16, and PEX17 genes, which have previously been shown to be essential for peroxisome biogenesis, affect the export of plasma membrane and cell wall-associated proteins specific for the mycelial form but do not impair exit from the endoplasmic reticulum of either Pex2p and Pex16p or of proteins destined for secretion. Biochemical analyses of these mutants provide evidence for the existence of four distinct secretory pathways that serve to deliver proteins for secretion, plasma membrane and cell wall synthesis during yeast and mycelial modes of growth, and peroxisome biogenesis. At least two of these secretory pathways, which are involved in the export of proteins to the external medium and in the delivery of proteins for assembly of the peroxisomal membrane, diverge at the level of the endoplasmic reticulum.  相似文献   

2.
Rat PEX12 cDNA was isolated by functional complementation of peroxisome deficiency of a mutant CHO cell line, ZP109 (K. Okumoto, A. Bogaki, K. Tateishi, T. Tsukamoto, T. Osumi, N. Shimozawa, Y. Suzuki, T. Orii, and Y. Fujiki, Exp. Cell Res. 233:11-20, 1997), using a transient transfection assay and an ectopic, readily visible marker, green fluorescent protein. This cDNA encodes a 359-amino-acid membrane protein of peroxisomes with two transmembrane segments and a cysteine-rich zinc finger, the RING motif. A stable transformant of ZP109 with the PEX12 was morphologically and biochemically restored for peroxisome biogenesis. Pex12p was shown by expression of bona fide as well as epitope-tagged Pex12p to expose both N- and C-terminal regions to the cytosol. Fibroblasts derived from patients with the peroxisome deficiency Zellweger syndrome of complementation group III (CG-III) were also complemented for peroxisome biogenesis with PEX12. Two unrelated patients of this group manifesting peroxisome deficiency disorders possessed homozygous, inactivating PEX12 mutations: in one, Arg180Thr by one point mutation, and in the other, deletion of two nucleotides in codons for 291Asn and 292Ser, creating an apparently unchanged codon for Asn and a codon 292 for termination. These results indicate that the gene encoding peroxisome assembly factor Pex12p is a pathogenic gene of CG-III peroxisome deficiency. Moreover, truncation and site mutation studies, including patient PEX12 analysis, demonstrated that the cytoplasmically oriented N- and C-terminal parts of Pex12p are essential for biological function.  相似文献   

3.
Peroxisomal matrix protein import requires the action of two AAA ATPases, PEX1 and PEX6. Mutations in either the PEX1 or PEX6 gene are the most common cause of the lethal neurologic disorders Zellweger syndrome, neonatal adrenoleukodystrophy, and infantile Refsum disease and account for disease in 80% of all such patients. We report here that overexpression of PEX6 can suppress the phenotypes of certain PEX1-deficient cells, that overexpression of PEX1 can suppress the phenotypes of certain PEX6-deficient cells, and that these instances of suppression are allele-specific and require partial activity of the mutated gene. In addition to genetic evidence for interaction between PEX1 and PEX6, we find that the PEX1 and PEX6 proteins interact in the yeast two-hybrid assay and physically associate with one another in vitro. We previously identified a missense mutation in PEX1, G843D, which attenuates PEX1 function and is the most common cause of these diseases, present in one-third of all such patients. The G843D mutation attenuates the interaction between PEX1 and PEX6 in both the two-hybrid system and in vitro and appears to be suppressed by overexpression of PEX6. We conclude that PEX1 and PEX6 form a complex of central importance to peroxisome biogenesis and that mutations affecting this complex constitute the most common cause of the Zellweger syndrome spectrum of diseases.  相似文献   

4.
The peroxisome biogenesis disorders (PBDs), including Zellweger syndrome (ZS), neonatal adrenoleukodystrophy (NALD) and infantile Refsum disease (IRD), are autosomal recessive diseases caused by deficiency of peroxisome assembly as well as malfunction of peroxisomes, where >10 genotypes have been reported. ZS patients manifest the most severe clinical and biochemical abnormalities, while those with NALD and IRD show the least severity and the mildest features, respectively. PEX1 is the causative gene for PBDs of complementation group I (CG1), the highest incidence PBD, and encodes the peroxin, Pex1p, a member of the AAA ATPase family. In the present work, we found that peroxisomes were morphologically and biochemically formed at 30 but not 37 degrees C, in the fibroblasts from all CG1 IRD patients examined, whereas almost no peroxisomes were seen in ZS and NALD cells, even at 30 degrees C. A point missense mutation, G843D, was identified in the PEX1 allele of most CG1 IRD patients. The mutant PEX1, termed HsPEX1G843D, gave rise to the same temperature-sensitive phenotype on CG1 CHO cell mutants upon transfection. Collectively, these results demonstrate temperature-sensitive peroxisome assembly to be responsible for the mildness of the clinical features of PEX1 -defective IRD of CG1.  相似文献   

5.
6.
We isolated peroxisome biogenesis-defective mutants from Chinese hamster ovary cells by the 9-(1'-pyrene)nonanol/ultraviolet (P9OH/UV) method. Seven cell mutants, ZP116, ZP119, ZP160, ZP161, ZP162, ZP164, and ZP165, of 11 P9OH/UV-resistant cell clones showed cytosolic localization of catalase, a peroxisomal matrix enzyme, apparently indicating a defect of peroxisome biogenesis. By transfection of PEX cDNAs and cell fusion analysis, mutants ZP119 and ZP165 were found to belong to a novel complementation group (CG), distinct from earlier mutants. CG analysis by cell fusion with fibroblasts from patients with peroxisome biogenesis disorders such as Zellweger syndrome indicated that ZP119 and ZP165 were in the same CG as the most recently identified human CG-J. The peroxisomal matrix proteins examined, including PTS1 proteins as well as a PTS2 protein, 3-ketoacyl-CoA thiolase, were also found in the cytosol in ZP119 and ZP165. Furthermore, these mutants showed typical peroxisome assembly-defective phenotype such as severe loss of resistance to 12-(1'-pyrene)dodecanoic acid/UV treatment. Most strikingly, peroxisomal reminiscent vesicular structures, so-called peroxisomal ghosts noted in all CGs of earlier Chinese hamster ovary cell mutants as well as in eight CGs of patients' fibroblasts, were not discernible in ZP119 and ZP165, despite normal synthesis of peroxisomal membrane proteins. Accordingly, ZP119 and ZP165 are the first cell mutants defective in import of both soluble and membrane proteins, representing the 14th peroxisome-deficient CG in mammals, including humans.  相似文献   

7.
8.
To illustrate the clinical and biochemical heterogeneity of peroxisomal disorders, we report our experience with 27 patients seen personally between 1982 and 1997. Twenty patients presented with a phenotype corresponding either to Zellweger syndrome, neonatal adrenoleukodystrophy, or infantile Refsum disease, 3 of whom had a peroxisomal disorder due to a single enzyme defect. One patient had a mild form of rhizomelic chondrodysplasia punctata, 1 had classic Refsum disease. Finally, 5 patients presented with clinical manifestations that were either unusually mild or completely atypical, and initially did not arouse suspicion of a peroxisomal disorder. They showed multiple defects of peroxisomal functions with one or several functions remaining intact, suggesting a peroxisome biogenesis disorder. The defect in peroxisome biogenesis was further characterized by variable expression in different tissues and/or individual cells in 5 patients. Studies restricted to fibroblasts failed to identify abnormalities in this group. We demonstrate that clinical manifestations of peroxisomal disorders may be very mild or completely atypical, and therefore, peroxisomal disorders should be considered in a variety of clinical settings. Furthermore, we suggest performing extensive peroxisomal investigations in every patient suspected of suffering from a peroxisomal disorder, even when the clinical presentation is typical.  相似文献   

9.
We report a case of dysplastic arterial vascular abnormality in a 32-year-old man with overlying neuronal cell migration disorder. MR images showed a thickened left insular cortex adjacent to the abnormal vascular network. These findings suggest the possibility of leptomeningeal damage during neuronal cell migration as the cause of the overlying vasculopathy. The true pathogenesis of these seemingly associated abnormalities is unknown.  相似文献   

10.
Zellweger syndrome and related diseases are caused by defective import of peroxisomal matrix proteins. In all previously reported Zellweger syndrome cell lines the defect could be assigned to the matrix protein import pathway since peroxisome membranes were present, and import of integral peroxisomal membrane proteins was normal. However, we report here a Zellweger syndrome patient (PBD061) with an unusual cellular phenotype, an inability to import peroxisomal membrane proteins. We also identified human PEX16, a novel integral peroxisomal membrane protein, and found that PBD061 had inactivating mutations in the PEX16 gene. Previous studies have suggested that peroxisomes arise from preexisting peroxisomes but we find that expression of PEX16 restores the formation of new peroxisomes in PBD061 cells. Peroxisome synthesis and peroxisomal membrane protein import could be detected within 2-3 h of PEX16 injection and was followed by matrix protein import. These results demonstrate that peroxisomes do not necessarily arise from division of preexisting peroxisomes. We propose that peroxisomes may form by either of two pathways: one that involves PEX11-mediated division of preexisting peroxisomes, and another that involves PEX16-mediated formation of peroxisomes in the absence of preexisting peroxisomes.  相似文献   

11.
Zellweger syndrome is a prototype of peroxisomal biogenesis disorders and a fatal autosomal recessive disease with no effective therapy. We identified nine genetic complementation groups of these disorders, and mutations in peroxisome assembly factor-1 (PAF-1) and the 70-kD peroxisomal membrane protein (PMP70) genes have been detected by our group F and Roscher's group 1, respectively. We now describe permanent recovery from generalized peroxisomal abnormalities in fibroblasts of a Zellweger patient from group F, such as biochemical defects of peroxisomal beta-oxidation, plasmalogen biosynthesis, and morphologic absence of peroxisomes, by stable transfection of human cDNA encoding PAF-1. In the light of these observations, we designed a gene expression system using fibroblasts from patients with peroxisomal biogenesis disorders. In Zellweger fibroblasts obtained from Roscher's group 1 and transfected with human cDNA encoding PMP70, peroxisomes were not morphologically identifiable, and peroxisomal function did not normalize.  相似文献   

12.
Two targeting signals, PTS1 and PTS2, mediate import of proteins into the peroxisomal matrix. We have cloned and sequenced the watermelon (Citrullus vulgaris) cDNA homologue to the PTS1 receptor gene (PEX5). Its gene product, CvPex5p, belongs to the family of tetratricopeptide repeat (TPR) containing proteins like the human and yeast counterparts, and exhibits 11 repeats of the sequence W-X2-(E/S)-(Y/F/Q) in its N-terminal half. According to fractionation studies the plant Pex5p is located mainly in the cytosolic fraction and therefore could function as a cycling receptor between the cytosol and glyoxysomes, as has been proposed for the Pex5p of human and some yeast peroxisomes. Transformation of the Hansenula polymorpha peroxisome deficient pex5 mutant with watermelon PEX5 resulted in restoration of peroxisome formation and the synthesis of additional membranes surrounding the peroxisomes. These structures are labeled in immunogold experiments using antibodies against the Hansenula polymorpha integral membrane protein Pex3p, confirming their peroxisomal nature. The plant Pex5p was localized by immunogold labelling mainly in the cytosol of the yeast, but also inside the newly formed peroxisomes. However, import of the PTS1 protein alcohol oxidase is only partially restored by CvPex5p.  相似文献   

13.
In order to investigate the mechanisms of peroxisome biogenesis and to identify components of the peroxisomal import machinery we studied these processes in the yeast Saccharomyces cerevisiae. The forward genetic approach has led to pas-mutants (peroxisomal assembly) which fall into 12 complementation groups and allowed to identify 10 of the corresponding wild-type PAS genes (PAS 1-7, 9, 11 and 12). Recent sequence analysis data of some of these genes are beginning to provide first hints as to the possible function of their gene products. The PAS genes and their corresponding mutants are presently used to address some important questions of peroxisomal biogenesis. Reversed genetics has been started as a complementary approach to characterize especially the function of peroxisomal membrane proteins. For this purpose we describe a technique to isolate highly purified peroxisomes. This led to the identification of 21 polypeptides as constituents of this organelle. Some of them are presently sequenced.  相似文献   

14.
We have cloned the Hansenula polymorpha PEX4 gene by functional complementation of a peroxisome-deficient mutant. The PEX4 translation product, Pex4p, is a member of the ubiquitin-conjugating enzyme family. In H.polymorpha, Pex4p is a constitutive, low abundance protein. Both the original mutant and the pex4 deletion strain (Deltapex4) showed a specific defect in import of peroxisomal matrix proteins containing a C-terminal targeting signal (PTS1) and of malate synthase, whose targeting signal is not yet known. Import of the PTS2 protein amine oxidase and the insertion of the peroxisomal membrane proteins Pex3p and Pex14p was not disturbed in Deltapex4 cells. The PTS1 protein import defect in Deltapex4 cells could be suppressed by overproduction of the PTS1 receptor, Pex5p, in a dose-response related manner. In such cells, Pex5p is localized in the cytosol and in peroxisomes. The peroxisome-bound Pex5p specifically accumulated at the inner surface of the peroxisomal membrane and thus differed from Pex5p in wild-type peroxisomes, which is localized throughout the matrix. We hypothesize that in H. polymorpha Pex4p plays an essential role for normal functioning of Pex5p, possibly in mediating recycling of Pex5p from the peroxisome to the cytosol.  相似文献   

15.
Mash1 regulates neurogenesis in the ventral telencephalon   总被引:1,自引:0,他引:1  
Previous studies have shown that mice mutant for the gene Mash1 display severe neuronal losses in the olfactory epithelium and ganglia of the autonomic nervous system, demonstrating a role for Mash1 in development of neuronal lineages in the peripheral nervous system. Here, we have begun to analyse Mash1 function in the central nervous system, focusing our studies on the ventral telencephalon where it is expressed at high levels during neurogenesis. Mash1 mutant mice present a severe loss of progenitors, particularly of neuronal precursors in the subventricular zone of the medial ganglionic eminence. Discrete neuronal populations of the basal ganglia and cerebral cortex are subsequently missing. An analysis of candidate effectors of Mash1 function revealed that the Notch ligands Dll1 and Dll3, and the target of Notch signaling Hes5, fail to be expressed in Mash1 mutant ventral telencephalon. In the lateral ganglionic eminence, loss of Notch signaling activity correlates with premature expression of a number of subventricular zone markers by ventricular zone cells. Therefore, Mash1 is an important regulator of neurogenesis in the ventral telencephalon, where it is required both to specify neuronal precursors and to control the timing of their production.  相似文献   

16.
We cloned a human PEX11 cDNA by expressed sequence tag homology search using yeast Candida boidinii PEX11, followed by screening of human liver cDNA library. PEX11 encoded a peroxisomal protein Pex11p comprising 247 amino acids, with two transmembrane segments and a dilysine motif at the C-terminus. Pex11p comigrated in SDS-PAGE with a 28-kDa peroxisomal integral membrane protein (PMP28) isolated from the liver of clofibrate-treated rats and was crossreactive to anti-PMP28 antibody, thereby indicating PEX11 to encode PMP28. Pex11p exposes both N- and C-terminal parts to the cytosol. PEX11 was not responsible for ten complementation groups of human peroxisome deficiency disorders.  相似文献   

17.
The reeler mutation in mice produces an especially well characterized disorder, with systematically abnormal migration of cerebral cortical neurons. The reeler gene encodes a large protein, termed Reelin, that in the cortex is synthesized and secreted exclusively in the Cajal-Retzius neurons of the cortical marginal zone (D'Arcangelo et al., 1995). In reeler mutant mice, loss of Reelin protein is associated with a systematic loss of the normal, "inside-out" sequence of neurogenesis in the cortex: neurons are formed in the normal sequence but become localized in the cortex in a somewhat inverted, although relatively disorganized "outside-in" pattern. Here we show that the scrambler mutant mouse exhibits a loss of lamination in the cortex and hippocampus that is indistinguishable from that seen in the reeler mouse. We use BrdU birthdating studies to show that scrambler cortex shows a somewhat inverted "outside-in" sequence of birthdates for cortical neurons that is similar to that previously described in reeler cortex. Finally, we perform staining with the CR-50 monoclonal antibody (Ogawa et al., 1995), which recognizes the Reelin protein (D'Arcangelo et al., 1997). We show that Reelin immunoreactivity is present in the scrambler cortex in a normal pattern, suggesting that Reelin is synthesized and released normally. Our data suggest that scrambler is a mutation in the same gene pathway as the reeler gene (Relnrl) and is most likely downstream of Relnrl.  相似文献   

18.
The peroxisomal flavoprotein alcohol oxidase (AO) is an octamer (600 kDa) consisting of eight identical subunits, each of which contains one flavin adenine dinucleotide molecule as a cofactor. Studies on a riboflavin (Rf) auxotrophic mutant of the yeast Hansenula polymorpha revealed that limitation of the cofactor led to drastic effects on AO import and assembly as well as peroxisome proliferation. Compared to wild-type control cells Rf-limitation led to 1) reduced levels of AO protein, 2) reduced levels of correctly assembled and activated AO inside peroxisomes, 3) a partial inhibition of peroxisomal protein import, leading to the accumulation of precursors of matrix proteins in the cytosol, and 4) a significant increase in peroxisome number. We argue that the inhibition of import may result from the saturation of a peroxisomal molecular chaperone under conditions that normal assembly of a major matrix protein inside the target organelle is prevented.  相似文献   

19.
We have identified ScPex18p and ScPex21p, two novel S. cerevisiae peroxins required for protein targeting via the PTS2 branch of peroxisomal biogenesis. Targeting by this pathway is known to involve the interaction of oligopeptide PTS2 signals with Pex7p, the PTS2 receptor. Pex7p function is conserved between yeasts and humans, with defects in the human protein causing rhizomelic chondrodysplasia punctata (RCDP), a severe, lethal peroxisome biogenesis disorder characterized by aberrant targeting of several PTS2 peroxisomal proteins, but uncertainty remains about the subcellular localization of this receptor. Previously, we have reported that ScPex7p resides predominantly in the peroxisomal matrix, suggesting that it may function as a highly unusual intraorganellar import receptor, and the data presented in this paper identify Pex18p and Pex21p as key components in the targeting of Pex7p to peroxisomes. They each interact specifically with Pex7p both in two-hybrid analyses and in vitro. In cells lacking both Pex18p and Pex21p, Pex7p remains cytosolic and PTS2 targeting is completely abolished. Pex18p and Pex21p are weakly homologous to each other and display partial functional redundancy, indicating that they constitute a two-member peroxin family specifically required for Pex7p and PTS2 targeting.  相似文献   

20.
Niemann-Pick type C disease is an inherited disorder characterized by lysosomal accumulation of cholesterol and the mutant gene has recently been identified. The predicted gene product is a transmembrane protein showing homology to proteins involved in the regulation of cholesterol homeostasis, such as 3-hydroxy-3-methylglutaryl-coenzyme A and the sterol regulatory element binding protein cleavage-activating protein. Recent investigations have established a peroxisomal deficiency, which raised the question of whether peroxisomal proliferation could affect this cholesterol-processing error. Mutant mice with Niemann-Pick type C disease were treated with the peroxisomal inducer perfluorooctanoic acid, which increased peroxisomal beta-oxidation and catalase activity to the same level as in control mice. Not only the peroxisomal, but also the lysosomal malfunctions were corrected and the cholesterol content was decreased. Clofibrate, another peroxisomal inducer, restored both peroxisomal enzyme activities and ubiquinone content. It appears that in Niemann-Pick type C disease treatment with appropriate peroxisomal inducers restores basic cellular functions, indicating a relationship between peroxisomes and cholesterol homeostasis, and thereby may effectively interfere with the development of the disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号