共查询到20条相似文献,搜索用时 8 毫秒
1.
研究了并流共沉淀法制备的Pd/ZnO催化剂上的甲醇水蒸气重整制氢反应.考察了钯含量、还原温度、反应温度、重时空速(WHSV)和水-甲醇摩尔比(水醇比)对反应的影响.研究结果表明,当钯质量分数为15.9%,反应温度为523~573 K,还原温度为523~573 K,水醇比为1.0~1.2,WHSV=17.2 h-1时,反应具有较好的CH3OH转化率、CO2选择性、H2产率及较低的出口CO摩尔分数.与铜基催化剂相比,Pd/ZnO催化剂表现出较好的稳定性. 相似文献
2.
3.
4.
5.
本文开发了一种Zn-Ni型甲醇水蒸气高温重整制氢催化剂。选用列管反应装置模拟活性测试,考察了SRM-5催化剂在不同反应温度、反应压力、液空速对甲醇水蒸气重整制氢的甲醇转化率及H_2选择性的影响,由此确定了催化剂的最佳适用范围(使用温度为350~400℃,使用压力≤2.0MPa,进料液空速≤3.0 h~(-1));同时,还考察了SRM-5催化剂的活性稳定性,连续运行720 h,催化剂活性变化不大,表现出优异的活性稳定性。在甲醇重整制氢燃料电池领域具有良好的应用前景。 相似文献
6.
7.
采用机械化学法制备了用于SRM反应的CuZnAl催化剂,并通过N2吸-脱附、N2O滴定、SEM、XRD、H2-TPR及原位FT-IR等手段对催化剂进行表征,对不同方法所制备催化剂的结构和性能进行了研究.结果表明:球磨法制备的CuZnAl催化剂形成较为规整的表面介孔结构,与浸渍法相比,具有较高的Cu比表面积和分散度,在SRM反应中CuZnAl催化剂较浸渍法制备的JZ-CuZnAl催化剂展现出更为优异的催化性能,当空速为58464 mL·(g·h)-1、进料水醇摩尔比为3:2、反应温度为300℃条件下,甲醇转化率达到81.2%,重整气中CO的体积分数为1.2%. 相似文献
8.
从反应机理出发,介绍了活性金属和载体对催化剂活性、选择性、稳定性的影响,综述了乙醇水蒸气重整催化剂的研究进展。常用的活性金属中,Ni、Co对C—C键和C—H键的断裂具有较好的催化活性,而Cu主要利于乙醇催化脱氢。为了兼顾H2产率和抗积碳能力,往往通过合理设计合金,综合利用不同金属的活性特征。具有较大比表面积和较强碱性的载体也有利于抑制乙醇脱氢反应,减少积碳的产生。未来的研究工作中,仍需对反应原理进行更为深入的探究,阐明活性金属及载体在积碳产生过程中的作用机制,为高H2产率、高稳定性的新型乙醇水蒸气重整催化剂的设计提供指导。 相似文献
9.
高品质氢气的在线稳定供给是质子交换膜燃料电池(PEMFC)商业化的瓶颈和亟待解决的关键问题,以二甲醚为原料经水蒸气重整制取氢气是近中期最为现实和有效的氢源供给方案之一。本文总结和评述了近期二甲醚水蒸气重整制氢催化剂的研究进展,主要集中在固体酸催化剂中氧化铝和HZSM-5分子筛酸强度、酸类型以及结构的调变对性能的影响,同时对金属催化剂特别是Pd基贵金属催化剂和Zn基催化剂的研究现状、整体式催化剂以及催化剂的失活与再生的相关研究进行了重点介绍。根据对相关研究结果的总结,提出今后该领域的重要研究方向为:开发新型In2O3催化剂;构建具有多级孔、纳米结构的催化剂体系;创制具有特殊结构的催化剂(以多级孔分子筛/氧化铝为核,连续无缺陷的金属催化剂为壳)。 相似文献
10.
11.
12.
氢气具有无污染,易转化成热能、电能和机械能等特点,所以有人预计,在下一世纪,氢能将取代大部分矿物燃料,在汽车、飞机、火电站、工业炉及家庭中广泛使用,最今后的主要二次能源之一。 相似文献
13.
《煤化工》2018,(5)
以Cu与Co的硝酸盐和尿素为原料,γ-Al_2O_3为载体,通过均匀沉淀-负载法,制得Cu-Co/γ-Al_2O_3催化剂。采用比表面积测试(BET)、H2程序升温还原(H2-TPR)和透射电子显微镜(TEM)等技术,对催化剂进行表征,并且考察了催化剂在甲醇水蒸气重整制氢反应中的性能。结果表明,Cu-Co/γ-Al_2O_3催化剂的比表面积可以达到164m~2/g,催化剂高温还原峰的温度大幅下降,低温还原峰的面积大幅增加,催化剂更易还原;催化剂粒度减小,尤其是表相粒径较小的微粒所占比例增大,催化剂的稳定性增加,抗烧结、团聚性能增强;将Cu-Co/γ-Al_2O_3催化剂用于270℃下的浆态床甲醇重整反应,其初始活性可达99%以上,60 h后其活性下降不明显。反应后的催化剂分散性良好,无明显团聚,粒径为10 nm~15 nm。 相似文献
14.
甲醇具有结构简单、含氢量高、产能大等优点,利用甲醇与水蒸气进行重整是一种节能高效的现场制氢方式。甲醇水蒸气重整(MSR)与燃料电池联用能够实现多场景应用,但由于反应温度较高(250~300℃),存在启动速度较慢、副产CO含量较高和热效率较低等问题。低温甲醇水重整(LT-Methanol Water Reforming, LT-MWR)包括低温甲醇水蒸气重整(LT-MSR)与液相甲醇水重整(Aqueous-phase Reforming of Methanol, APRM),反应通常在200℃以下进行,同时保持较高的反应活性,进而能够减少预热时间、减弱副反应发生,且能与燃料电池实现更强的热耦合。本工作首先介绍了商用催化剂优异的性能与存在的缺陷,然后对低温甲醇水重整制氢催化剂,诸如Cu基催化剂、贵金属催化剂与光协同催化剂的研究进展进行了回顾。归纳了低温铜基催化剂的改性策略,包括合成方法、结构设计与元素掺杂。对国内外商用CuZnAlOx催化剂结构与性能的测试表明,其转化率高和稳定性好,存在的缺陷是价格较贵且在低温区催化活性急剧下降。Cu基催化剂活性受温度影响较大,在低温区活性很低,但通过适当的改性能够实现其应用价值,其改性策略包括合成方法、结构设计与元素掺杂。贵金属催化剂低温下活性较高,但存在价格昂贵、合成复杂等缺点。光协同催化剂则是在光照条件下进行催化重整,尚处于研究阶段。对于Cu基催化剂,合成方法的改进能够大大改善催化剂的微观混合程度与可重现性。适当的结构设计可提升催化剂的比表面积与热稳定性。元素掺杂则能够提升活性组分的分散度,修饰催化剂表面结构。三种改性策略能够有效提升Cu基催化剂低温下甲醇重整制氢的性能,在保持较高活性的同时,降低CO副产物的含量。展望了低温甲醇水重整制氢催化剂的发展前景和挑战,对催化剂的开发与应用有指导意义。 相似文献
15.
研制了一种高效板翅式反应器,其特点是体积相对较小,便于放置,便于扩大规模;集预热、气化、重整、催化燃烧于一体;板翅式反应器内部热量利用合理,放热反应与吸热反应、气化与冷却之间实现了较好的热量耦合;可实现完全自供热.在反应器中进行了一系列甲醇水蒸气重整的实验,考察了不同条件对甲醇重整制氢过程的影响、对反应器床层温度分布的影响,及反应器的稳定性.另外,由于板翅式结构的良好传热性,甲醇水蒸气重整在获得较高转化率的同时重整气中CO浓度较低,且反应器的稳定性良好. 相似文献
16.
以硝酸铜、硝酸铝和硝酸锰为原料,用共沉淀法制备了Cu-Mn-Al尖晶石固溶体催化剂,用于甲醇水蒸气重整制氢反应.采用BET、H2-TPR、XRD、SEM、XPS等方法对催化剂进行了表征,考察了Mn的添加比例(CuMnxAl4–x,x=0~0.5)对催化剂物理化学性质、形貌及催化性能的影响.结果表明,Mn添加比例不同,催化剂的比表面积、还原性能以及表面化学性质发生改变,随着Mn比例从0增大到0.5(以Cu的物质的量为基准,下同),CuAl尖晶石粒径增大、比表面积下降,并且更难被还原.催化剂的催化性能在x=0.25时最佳,在260℃、0.3 MPa、n(H2O):n(CH3OH)=1:1、质量空速(WHSV)为3.0 g-feed/(g-cat·h)的反应条件下,最高甲醇转化率为91.7%,连续运行150 h后甲醇转化率降至78.8%,均明显高于未含Mn的CuAl尖晶石催化剂. 相似文献
17.
近年来,随着能源需求与日俱增,化石燃料的燃烧造成的温室效应使得地球气候变得更加恶劣,如何有效实现碳减排成为各国科学家的研究重点。将二氧化碳转化为绿色液体燃料(如甲醇)是一个重要方向。通过甲醇合成(MS)实现碳捕获,再在需要能量时进行甲醇水蒸气重整(MSR)制备氢气,实现二氧化碳的闭路循环和氢能的储存,因此MSR反应具有很高的研究价值。在众多应用于甲醇水蒸气重整的催化剂中,Cu基催化剂因其价格低廉和高活性等优点受到广泛关注。综述了Cu基催化剂在甲醇水蒸气重整中的研究进展,包括机理探索,催化剂优化及未来的发展方向,提出铜基催化剂中铜的高分散、价态调控和复合氧化物与铜的协同是性能优化的关键。 相似文献
18.
《广州化工》2015,(22)
采用沉积-沉淀法制备出γ-Al2O3、Si O2和Al2O3·Si O2负载的Ni-Co催化剂,对催化剂进行性能测试,并用XRD和TPR等手段对催化剂进行了表征。结果表明:Al2O3·Si O2负载的Ni-Co催化剂在400~450℃时的氢气选择性最高,Al2O3负载的Ni-Co催化剂在500~600℃时的氢气选择性最高。XRD结合TPR可知:γ-Al2O3、Si O2和Al2O3·Si O2负载NiCo催化剂中都存在不同种类Ni O-Al2O3相和Co Ox-Al2O3相,金属-载体之间的相互作用可以提高活性金属组分Ni和Co的分散度,有利于提高催化剂的性能。 相似文献
19.