共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
高盐废水“零排放”是当今很多企业需要面临的非常严峻的环保问题,而离子膜电渗析由于其独特的分离机制能够实现高盐废水中无机盐的分离、浓缩和资源化利用,从而实现水和盐的回收利用。本文综述了离子膜电渗析目前在高盐废水“零排放”盐浓缩工艺中的应用情况;展望了电渗析在高盐高COD废水中的应用前景以及新型的电渗析技术如选择性电渗析和双极膜电渗析在混盐分离和盐的资源化利用中的机遇;同时指出离子膜电渗析在大规模应用中仍存在很多挑战,如离子膜性能的提高、电渗析工艺的优化和电渗析设备的投资成本和能耗如何降低。本文将为高盐废水“零排放”提供新思路,同时为离子膜电渗析在高盐废水“零排放”中的规模化应用奠定基础。 相似文献
3.
4.
电厂脱硫废水正渗透膜浓缩零排放技术的应用 总被引:3,自引:0,他引:3
介绍了膜浓缩(MBC)零排放技术在长兴电厂脱硫废水深度处理项目中的应用情况。系统可将22 m3/h含盐水浓缩至1.5~2 m3/h,盐分浓缩至200 g/L左右后进入蒸发结晶系统,最终生成结晶盐,经过浓缩处理后的清洁产水作为电厂锅炉补给水回用。运行结果表明,MBC零排放系统运行良好,有效地保证了电厂的稳定运行,带来良好的社会和经济效益。 相似文献
5.
6.
7.
8.
9.
10.
11.
本文介绍了膜处理技术在煤化工废水中的应用。煤化工废水具有高污染、高盐度的特点,会对自然生态系统造成极大威胁。膜处理技术作为一种分离技术,在煤化工废水的回用和零排放中起到重要作用。目前在煤化工废水领域中常用的膜技术有超滤、纳滤、反渗透、正渗透。本文对上述四种技术的原理及特点进行了归纳,结合实验测试结果及工程应用案例分析了膜处理技术的关键工艺及问题,为进一步深入研究煤化工废水的处理起指导作用。 相似文献
12.
13.
14.
16.
传统浓盐水零排放技术,由于其占地面积大、能耗高、启动条件复杂等问题,发展过程中受到了很大的制约。膜热耦合技术,是将目前最先进的膜处理技术与传统的蒸发结晶技术结合的新技术。主要介绍了膜热耦合技术的原理,并介绍了其在浓盐水零排放处理中的应用。 相似文献
18.
19.
20.
介绍了正渗透膜浓缩(MBC)工艺在煤化工厂综合排放废水回用工程中的应用。工程运行结果表明:MBC系统可将TDS为54 000 mg/L的高压反渗透浓盐水浓缩至240 000 mg/L,经蒸发结晶系统制备出含固率>80%的结晶盐。MBC的产水回收率可达到75%,TDS为11 200 mg/L。MBC系统产水经两级反渗透脱盐后,TDS低于100 mg/L,脱盐后的产水可回用至循环水系统,从而实现煤化工废水的零排放。MBC的吨水蒸汽耗量仅为158 kg,远低于四效蒸发器,具有较低的运行能耗。采用氨水和二氧化碳作为汲取液,通过氨回收塔回收循环再利用,可节约药剂使用量。运行数据表明,以正渗透技术为核心的MBC工艺能够替代传统的四效蒸发器,保障零排放系统的稳定运行,在达到煤化工综合废水零排放的同时,极大地节约零排放处理过程中的能耗,可为煤化工企业带来良好的社会效益和经济效益。 相似文献