首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
综述了近年来盘式太阳能蒸馏器海水淡化技术的研究进展,重点介绍了传统盘式太阳能蒸馏器和双斜面盘式太阳能蒸馏器,以及在此基础上演变出的各种主动式盘式太阳能蒸馏器。认为通过增加外置设备可增大热能利用率,从而有效地增大产水量;新型材料也必将成为今后研究的热点。  相似文献   

2.
将金纳米流体加入盘式太阳能海水蒸馏系统,通过对比实验分析纳米流体的浓度对蒸发箱淡水产量以及光伏电池发电效率的影响。结果表明添加金纳米流体可以明显提高蒸馏系统单位面积产水量,并且随着纳米流体浓度的增加系统淡水产量也随之增加,实验中的采用纳米流体的蒸馏系统当日单位面积产水量最高达到了2802.7 mL/m~2相比于传统盘式蒸馏系统提升了39.96%;而光伏电池发电效率随着纳米流体的增加而下降。主要原因是随着纳米流体浓度的增加,纳米流体吸收率增加而透射率减少,导致海水吸收更多的太阳辐射而光伏电池接收的太阳光减少。  相似文献   

3.
综述了近年来倾斜式太阳能蒸馏器海水淡化技术的研究进展,重点介绍了倾斜盘式太阳能蒸馏器和倾斜芯型太阳能蒸馏,以及在此基础上演变出的各种新型倾斜式太阳能蒸馏器。认为降低盖板温度、提高太阳辐射吸收效率、附加蓄热装置对于提高倾斜式太阳能蒸馏器的性能具有重要作用。  相似文献   

4.
基于自主设计的新型空气隙膜蒸馏组件,建立了一套具有内部热量回收的太阳能空气隙膜蒸馏海水淡化系统,研究了料液流量、中空纤维缠绕角度、太阳辐照量以及天气对太阳能膜蒸馏系统产水性能的影响。结果表明:料液流量的增加在提高膜通量的同时,会牺牲一定的造水比;在一定范围内,中空纤维缠绕角度的减小有利于膜通量和造水比的提高;系统的日产水量随季节变化幅度较大,且晴天的日产水量明显高于阴天;日产水量和日造水比与太阳辐照量的变化趋势一致。当太阳能集热面积为2.38 m~2、膜面积为0.6 m~2、料液流量为50 L/h时,最大膜通量为5.1 kg/(m~2·h),最大日造水比为3.2,最大日产水量为21.7 L/d,产水电导率稳定在20.0μS/cm以下。太阳能膜蒸馏系统运行稳定,性能可靠,在电能和淡水资源短缺的偏远地区具有很好的应用价值。  相似文献   

5.
关注了一种以太阳能为驱动热源,基于空气隙膜蒸馏过程的新型海水淡化技术(SP-AGMD),介绍了该技术涉及的膜组件和太阳能集热装置的材质、形式、特点和研究概况,并对比分析了各种膜组件和太阳能集热装置的优势及存在的不足,对国内外的最新研究进展作了重点讨论。将太阳能引入膜蒸馏海水淡化过程大大降低了能耗,有效避免了二次污染而且最大程度节约了运行费用。认为该技术尚处于实验室研究和小型示范阶段,将膜组件与太阳能集热装置更加高效的耦合,进一步降低系统总能耗将是太阳能空气隙膜蒸馏领域的重要方向。  相似文献   

6.
太阳能在海水淡化产业中的应用与研究进展   总被引:1,自引:0,他引:1  
太阳能蒸馏技术与太阳能反渗透技术是太阳能在海水淡化产业中主要的应用形式.从本质上讲,前者是利用太阳能的光热转换,而后者是利用太阳能的光电转换.文章从上述两个方面出发,综述了近几个世纪以来太阳能在海水淡化产业中的应用与研究进展,并对该产业下一步的发展进行了初步展望.  相似文献   

7.
杨种田  朱丽娅  程慧 《粘接》2006,27(6):46-47
概要论述了纳米颗粒的基本物理和化学性质,并对其在胶粘剂改性中的研究和应用进行了概述。  相似文献   

8.
正近日,美国阿贡国家实验室(Argonne National Laboratory)塞思·B·达林(Seth B. Darling)博士等研究者以传统中国文房四宝之一的墨为光热转换材料对多孔材料进行表面沉积改性,可用于膜蒸馏海水淡化。基于中国墨的涂层在近红外(NIR)及紫外(UV)区具有强吸收特性,其改性膜材料具有卓越的光热转化效率和水蒸发效率。此外,这种墨涂层的强粘附能力使其能够在木材、纤维、塑料等各种多孔基底表面简便涂覆沉积,利于大规模工业化应用。  相似文献   

9.
纳米金和磁性纳米颗粒在生物传感器中的应用   总被引:1,自引:0,他引:1  
纳米技术的出现为纳米材料在分析化学领域的发展和应用开辟了新的方向。纳米材料的优异性能例如比表面积大、反应活性高等为生物检测奠定了基础。综述了纳米材料中纳米金和磁性纳米颗粒在生物传感器中的应用,并对其将来的发展进行了展望。  相似文献   

10.
当今世界上工业废水排放造成的污染占水体污染的主导地位。而染料废水作为工业废水的其中一种,其处理的各种物理和化学处理步骤更耗时、成本高且效率较低。在这方面,银纳米颗粒在染料废水处理中的潜力得到了极大的探索。为了有效去除染料,对处理条件进行了优化和探索。此外,银纳米复合材料的作用也取得了巨大的成功。同时,也认识到了银纳米颗粒介导的毒性机制,即使是在低浓度和有害的生物效应时,纳米粒子释放到处理过的水和污泥中,纳米银污染土壤、水环境和地下水的命运是一个值得关注的问题。因此,本文综述了银纳米颗粒和银基纳米复合材料在污水处理中的应用现状。  相似文献   

11.
孙昌  孙梅  任芊芊  吴双  郭雯  王婉婧 《江苏陶瓷》2021,54(2):19-21,24
近年来,纳米技术成为科学技术领域最重要与最激动人心的前沿领域之一.随着纳米技术的发展,纳米材料在生产和生活的各方面发挥着越来越重要的作用.陶瓷纳米颗粒作为一类重要的纳米材料,拥有体积效应、介电限域效应、量子尺寸效应和量子隧道效应等,使其在生物医学领域具有广阔的应用前景.本文综述了羟基磷灰石、磷酸钙、氧化铁、氧化锌和氧化铈陶瓷纳米颗粒的特点及其在肿瘤成像与治疗、骨组织工程和安全评价等生物医学领域的应用进展,并对陶瓷纳米颗粒在生物医学中的发展提出了几点建议.  相似文献   

12.
介绍了金纳米颗粒的合成与表面修饰,基于其功能化电极和电化学传感器的构建,综述了金纳米颗粒在电化学传感中的应用,如用于生物小分子、重金属离子/非金属有毒物质、癌细胞的实时检测等。  相似文献   

13.
介绍了分子蒸馏技术的原理和特点及其在聚硅氧烷蒸馏中的应用。  相似文献   

14.
15.
介绍了海水淡化技术的现状及主流技术,阐述了有机涂层作为新技术和新工艺在低温多效蒸馏海水淡化装置中的应用前景。  相似文献   

16.
针对油气田开发过程中常规驱油剂无法进一步大幅度提高采收率的问题,纳米颗粒材料因其具有独特的性质在油气田开发领域中得到了广泛的应用,并且取得一些较好的应用效果。介绍了目前应用的纳米颗粒材料的特性及种类,分析了纳米颗粒材料的宏观驱油机理及微观驱油机理,综述了纳米颗粒材料在钻井、采油、开发中的应用情况,并对纳米颗粒材料的研究、应用及在油气田开发中的应用前景进行了展望。  相似文献   

17.
总结了应用于液相的高速旋转式反应器、微通道反应器和应用于气相的气相流动反应器,阐述了旋转盘式反应器、旋转填充床反应器、高剪切搅拌反应器和管套管旋转环隙反应器4种高速旋转式反应器和液滴型微通道反应器及激光气化流动反应器、气溶胶反应器和连续流非热等离子体反应器3种连续气相反应器的设计原理、流场分布及在氧化物、核壳结构等诸多无机纳米颗粒及金属纳米棒等制备中的研究现状并分析了其优缺点。这些反应器均能制备粒径更为均一、结构独特的纳米颗粒;但在设备加工工艺、通道堵塞和放大等方面面临挑战。后续需充分利用其各自的特点开发出新的纳米材料和进行反应器放大规律研究,还要开发新型反应器来满足科技对纳米材料的要求。  相似文献   

18.
本文综述了纳米颗粒在非常规储层水力压裂中的应用现状,重点介绍了纳米颗粒的作用机理、应用、研究成果、技术挑战和未来研究方向。并指出纳米材料在改善粘弹性表面活性剂流体、泡沫基流体和聚合物基压裂液流变学方面的应用前景。以往的研究结果表明,纳米材料具有尺寸小、比表面积大、磁性能强、强度和稳定性好等独特的性能,可以应用于井下纳米传感器、纳米支撑剂、破胶剂和降滤失剂的开发。  相似文献   

19.
制备具有高孔隙率、高热稳定性、高离子传导性以及优异机械性能和高储存模量的电解质是当今锂离子电池研究领域的热点问题,但是使用单一聚合物基质基本无法满足这些特性,向单一聚合物电解质中添加无机纳米粒子,制备复合电解质是一种简便的、有效的途径制备综合性能优异的电解质体系。无机纳米粒子不仅能够改善聚合物电解质的物理特性,而且还能够抑制锂枝晶的生长,提升电池的循环性能。本文详细讨论了无机纳米颗粒在锂离子电池电解质改性中的应用,包括无机纳米颗粒的填充、涂覆、原位生成以及填充非织造电解质等;为进一步研究和开发具有机械稳定性、化学惰性和优异电化学性能的新型复合电解质体系提供了新的思路和方向。  相似文献   

20.
李芳  杜雪岩  杨瑞成 《应用化工》2011,40(4):568-571
采用湿化学还原法制备FePt纳米颗粒,选择复配型表面活性剂柠檬酸和聚乙二醇(PEG)、油酸和油胺,以及单一型表面活性剂十二烷基苯磺酸钠对FePt纳米颗粒进行修饰,比较了三者在FePt纳米颗粒形貌及磁性能上的作用区别。XRD、TEM以及振动样品磁强计表征结果显示,表面活性剂的选择对制备FePt纳米颗粒的结构没有影响,均显示化学无序的面心立方结构;复配型表面活性剂有利于诱导生成各向异性纳米结构,聚合物表面活性剂PEG诱导生成了棒状和米粒状纳米结构;室温下颗粒均显示超顺磁性,但饱和磁化强度M s差别很大,球形颗粒M s相对最大,而棒状颗粒M s相对较小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号