首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
镁/镀锌钢板CMT熔钎焊连接机制分析   总被引:4,自引:4,他引:0       下载免费PDF全文
采用CMT焊对AZ31B镁合金和HDG60镀锌钢异种材料进行熔钎焊.在试验中,采取了搭接焊的方式,通过调整焊接参数得到最佳焊接成形.使用扫描电子显微镜(SEM)、能谱分析(EDAX)、电子探针、X射线衍射(XRD)及拉伸试验对焊接接头微观连接机制及性能进行研究.结果表明,镁和镀锌钢能够形成良好的搭接接头.焊接接头可以分成焊缝区、结合界面、熔合区.结合面主要有Al,Zn,Mg三种元素,主要相有Al12,Mg17,Mg2Zn11,Al7Zn3及少量的MgFeAlO4复合氧化物.Zn和Al元素对镁钢连接起着关键作用,Zn在焊接接头形成过程中仍有一定的流动作用.在拉伸试验中,焊接接头试样几乎都断裂在熔合区,抗剪强度可达218 MPa.  相似文献   

2.
Mg/Al dissimilar joints with favourable static and dynamic mechanical properties were obtained utilising ultrasonic spot welding and ultrasonic spot weld bonding technology. The fatigue behaviour, fatigue failure mode, and typical fatigue fracture surface morphology of Mg/Al ultrasonic spot welding and ultrasonic spot weld bonding joints were compared and observed to get a better understanding of the fatigue failure mechanism. In general, the Mg/Al ultrasonic spot weld bonding joint exhibited better fatigue performance than the ultrasonic spot welding joint. The two kinds of joints presented different fatigue failure modes with decreasing applied load level. A fatigue life prediction model was established, and the fatigue life prediction results were in good agreement with the experimental fatigue results.  相似文献   

3.
The joining of DP780 steel to Al5052 was conducted by laser lap welding, in which the metal vapor and spatters were monitored by a high-speed camera. A universal testing machine was used to test the mechanical properties of the welded joints, and the changing law of lap tensile resistance with the laser welding parameters was analyzed. Optical microscope and scanning electron microscope were used to observe the macro-structure and micro-structure, respectively. Three different intermetallic compounds (IMCs) phases, i.e. banded Fe2Al5, FeAl2 and needle-like FeAl3 were generated at the steel/Al interface on microscopic observation. The aim of this research is to investigate the relationship among the lap tensile resistance, the welding parameters and the failure mode under different energy densities. Experimental results showed that the steel/Al joints have two different fracture modes at low heat input and high heat input. The failures happened along the heat-affected zone of the weld and along the steel/Al joint interface, respectively. And both of the two failure modes are brittle fractures. Additionally, cracks appeared at the fracture interface, and needle-like particle clusters were found in the fracture microstructure.  相似文献   

4.
1060纯铝箔作为中间层,通过电阻热辅助超声波缝焊的方式实现1 mm厚度6061铝合金和T2紫铜异种金属焊接,分析了焊接过程中电阻热对铝/铜焊接接头焊缝成形、界面形貌、温度场以及力学性能的影响. 结果表明,采用单独超声波缝焊焊接铝/铜异种金属时,因产生的焊接能量较小,接头连接界面处仅局部区域位置形成连接,接头拉剪强度为45 MPa. 但在电阻热辅助超声波缝焊过程中,电阻热的加入能够有效预热工件,令待焊材料表面发生软化,在高频振动作用下,接头连接界面处形成有效连接. 同时,引入电阻热提高了铝/铜界面处温度,由单独超声波缝焊的140 ℃增加至190 ℃,界面处原子扩散距离增加,获得焊接接头的拉剪强度增加至75 MPa,相对前者接头拉剪强度提高67%.  相似文献   

5.
In this study, the joints of dissimilar materials between S355JR carbon steel and 316L stainless steel were welded by gas tungsten arc welding (GTAW) multi-pass welding process. Characterisations of microstructure, mechanical properties and corrosion behaviours of dissimilar joint were investigated. The experimental results reveal that the microstructure of weld metal (WM) is austenite and vermiform δ-ferrite, and they cross-distribute in the weld seam. Moreover, there is a decarburisation layer on the interface of S355JR/WM, but the detrimental phase σ and M23C6 (chromium carbide) are not observed in the WM through X-ray diffraction. The fracture of the S355JR/316L welded joints always occurs in the S355JR heat affected zone during tensile test. Mechanical properties of the welded joints prepared by GTAW can meet the requirements of engineering application. The electrochemical corrosion test is also indicates that the corrosion resistance of WM decreases compared with the 316L base material. The corrosion products of S355JR/316L dissimilar welded joints in 3.5?wt-% NaCl aqueous solution mainly are α-Fe and FeOOH.  相似文献   

6.
Material flow and phase transformation were studied at the interface of dissimilar joint between Al 6013 and Mg, produced by stir friction welding (FSW) experiments. Defect-free weld was obtained when aluminum and magnesium were placed in the advancing side and retreating side respectively and the tool was placed 1 mm off the weld centerline into the aluminum side. In order to understand the material flow during FSW, steel shots were implanted as indexes into the welding path. After welding, using X-ray images, secondary positions of the steel shots were evaluated. It was revealed that steel shots implanted in advancing side were penetrated from the advancing side into the retreating side, whereas the shots implanted in the retreating side remained in the retreating side, without penetrating into the advancing side. The welded specimens were also heat treated. The effects of heat treatment on the mechanical properties of the welds and the formation of new intermetallic layers were investigated. Two intermetallic compounds, Al3Mg2 and Al12Mg17, were formed sequentially at Al6013/Mg interface.  相似文献   

7.
为获得更高质量的Cu/Al异质金属接头,开展了Cu/Al电流辅助大功率超声波焊接工艺试验,研究了辅助电流对Cu/Al超声波焊接的界面温度、材料塑性流动、界面中间相(IMC)分布及接头力学性能的影响。结果表明,复合焊件成型良好,其接头抗拉剪力为3030N,接头的断裂模式为韧性-脆性复合断裂。在同样的焊接时间0.2s内,随着电流的增大,Cu/Al界面温度增加,金属塑性流动以及界面扩散也随之增强,这说明辅助电流能明显促进界面冶金;相比长时间0.4 s的超声波焊接,辅助电流能在保证界面温度、材料塑性变形的前提下,能明显减薄界面IMC层的厚度,这是电流增强Cu/Al接头的主要物理机制。研究结果为优化Cu/Al复合焊接头强度提供了参考。  相似文献   

8.
Although the welding zone of direct bonding between a TiAl alloy and SCM440 can be obtained by friction welding, martensitic transformation and the formation of intermetallic compounds (IMCs) and cracks result in a lower tensile strength of the joints relative to those of other welding techniques. Insert metals were used as a buffer layer to relieve stress while increasing the bond strength. In this study, the microstructure and mechanical properties on welded joints of a TiAl alloy and SCM440 with various insert metals, were investigated. The TiAl/Cu/SCM440 and TiAl/Ni/SCM440 joints were fabricated using a servo-motor-type friction welding machine. As a result, it was confirmed that the formation of a welding flash was dependent on the insert metal type, and the strength of the base metal. At the TiAl/Cu/SCM440 interface, the formation of IMCs CuTiAl and Cu2TiAl was observed at TiAl/Cu, while no IMC formation was observed at Cu/SCM440. On the other hand, at the TiAl/Ni/SCM440 interface, several IMCs with more than 100 μm thickness were found, and roughly two compositions, viz., Ti2NiAl3 and TiNi2Al, were observed at the TiAl/Ni interface. At the Ni/SCM440 interface, 10 μm-thick FeNi and others were found.  相似文献   

9.
对1.2mm厚镀锌钢板和1.15mm厚6016铝合金平板试件进行了加入中间夹层铅的激光搭接焊试验,通过调整焊接工艺参数获得最佳焊接成形,利用卧式金相显微镜、扫描电镜、x射线衍射、微机控制电子万能试验机等手段研究了焊接接头各区域的金相组织、断口形貌、主要物相与接头力学性能.结果表明,在钢/铝激光焊中添加中间夹层铅,焊接接...  相似文献   

10.
预置纵向交变磁场对铝/钢异种材料进行激光搭接深熔焊试验,采用金相显微镜、扫描电镜等分析方法研究交变磁场对接头宏观形貌、显微组织、元素分布、力学性能及其断裂方式的影响.?结果表明,外加交变磁场作用下铝/钢接头焊缝的熔宽减小、熔深增加.?交变磁场诱导焊缝熔池中产生的电磁力促使界面层形成的IMCs由连续分布转向离散分布,成分...  相似文献   

11.
This study explored 6061 Al alloy and AZ31B Mg alloy joined by TIG lap welding with Zn foils of varying thicknesses, with the additional Zn element being imported into the fusion zone to alloy the weld seam. The microstructures and chemical composition in the fusion zone near the Mg substrate were examined by SEM and EDS, and tensile shear strength tests were conducted to investigate the mechanical properties of the Al/Mg joints, as well as the fracture surfaces, and phase compositions. The results revealed that the introduction of an appropriate amount of Zn transition layer improves the microstructure of Mg/Al joints and effectively reduces the formation of Mg-Al intermetallic compounds (IMCs). The most common IMCs in the fusion zone near the Mg substrate were Mg-Zn and Mg-Al-Zn IMCs. The type and distribution of IMCs generated in the weld zone differed according to Zn additions; Zn interlayer thickness of 0.4 mm improved the sample’s mechanical properties considerably compared to thicknesses of less than 0.4 mm; however, any further increase in Zn interlayer thickness of above 0.4 mm caused mechanical properties to deteriorate.  相似文献   

12.
Abstract

The effects of joining conditions and an age hardening post­weld heat treatment (PWHT) at 120°C for 24 h on the tensile strength and metallurgical properties of dissimilar friction joints between pure titanium and age strengthened 7075 Al–Zn–Mg alloy were investigated. Highest strength was achieved using intermediate friction pressure (150 MPa), short friction time (0.5 s), and high upsetting (forging) pressure (400 MPa). The joint tensile strength decreased when the joint diameter was increased from 8 to 16 mm. The joint tensile strength of as welded (AW) dissimilar joints was similar to that of PWHT joints with diameters of 8, 12, and 16 mm. Detailed TEM confirmed that there was a negligible difference in the thickness of the intermetallic layer formed at the dissimilar joint interface for AW and PWHT joints. While the intermetallic phases formed at the joint interface comprised Al3Ti, τ (Ti2Mg3Al18), and Al in AW joints, they consisted of Al+τ or Mg2Al3+τ+Al in PWHT joints. Softened regions were generated in 7075 base material immediately next to the interface in AW joints. Post­weld heat treatment increased the hardness of the softened region almost to that of as received 7075–T6 base material in 12 and 16 mm diameter joints. In contrast, the hardness of the softened region in 8 mm diameter joints could not be recovered to that of the as received material. This was a result of overaging and coarse precipitates in the softened region produced during the friction welding operation.  相似文献   

13.
Friction stir welding was used to join two aluminum 6061-T6 plates with an insert of a pure copper plate (Al/Cu/Al), and then the influence of the copper insert on the joint performance was studied. The dissimilar welding results were also compared with AA 6061 friction stir welds produced without copper insert (Al/Al). Optical and scanning electron microscopes were used for the microstructural observations of the welded samples. X-ray diffraction analysis was used to analyze phase component of the Al/Cu/Al specimen. A defect-free joint was observed for the Al/Cu/Al joint at a rotational speed of 950 r/min and a welding speed of 50 mm/min. Microstructural observation of the weld nugget zone (WNZ) demonstrates the formation of composite-like structure which promotes metallurgical bonding of aluminum and copper. XRD results show the formation of intermetallic compounds (IMCs), such as Al4Cu9 and Al2Cu. Furthermore, it was observed that the hardness of the weld with the Cu insert plate is higher than that of other samples due to more dislocation density and a distinct rise in hardness values was observed due to the presence of IMCs. The ultimate tensile strength of the joint with copper insert plate is higher than that of the other sample due to the strong metallurgical bonding between Al and Cu.  相似文献   

14.
Abstract

Cold metal transfer (CMT) welding–brazing joining of Ti6Al4V and Al A6061-T6 was carried out using AlSi5 wire. The joining mechanisms and mechanical properties of the joints were identified and characterised by scanning electron microscope, energy dispersive spectroscopy and tensile–shear tests. Desired CMT joints with satisfied weld appearances and mechanical properties were achieved by overlapping Ti on the top of Al. The joints had dual characteristics of a welding joint on the aluminium side and a brazing joint on the titanium side. Three brazing interfaces were formed for the joint, which increased the strength of the joint. An intermetallic compound layer was formed at the brazing interface, which included Ti3Al, TiAl and TiAl3. Two different fracture modes were also observed: one fractured at the welding/brazing interface and weld metal and the other at the Al heat affected zone (HAZ). Clearly, the joints fractured at the Al HAZ had higher tensile strength than those fractured at the welding/brazing interface and weld metal.  相似文献   

15.
采用填充式摩擦点焊技术对镁/铝异种金属进行工艺试验,并对点焊接头的力学性能和微观组织进行分析.结果表明,当采用合理的搭接接头设计和工艺参数进行镁/铝异种金属摩擦点焊时,可获得表面平整、抗剪切能力强的焊点,其焊点剪切力可达1865 N.组织分析发现,在焊核与镁母材之间的竖直界面处易出现少量的孔洞、微裂纹等缺陷,接头的断裂正发生在该区;而在镁/铝之间的水平界面结合良好,存在一定厚度的界面层组织,且该界面层组织的硬度要比两侧母材的硬度明显高很多,这与摩擦点焊过程中脆硬相的金属间化合物的形成有关.  相似文献   

16.
The welding of Mg/Al dissimilar materials with different filler metal was investigated, and the quantities and kinds of intermetallic compounds were discussed. In addition, the matching degrees between base metal and intermetallic compounds were defined and calculated, and the effect of different quantities of each intermetallic compound on the property of welded seam was investigated. The results indicated that the welded seam was composed of Al3Mg2 and Al12Mg17 by Mg/Al directly gas tungsten arc butt welding, and only one intermetallic compound of MgZn2 formed in the welding seam using Zn and Zn–xAl filler metal. The tensile strengths of the joints increased with the increase of the matching degrees between the intermetallic compounds and the base metal when the welded seam contained different intermetallic compound. Meanwhile, the tensile strengths of the joints are decreased with the increase of intermetallic compound content when the welded seams contained the seam intermetallic compound.  相似文献   

17.
Mg/Al dissimilar butt joint was produced by modified cold metal transfer process using wire AZ31 as filler metal. The energy input characteristics and the microstructure and mechanical behaviour of the joint were investigated. Microstructural analysis shows that a diffusion Mg–Al intermetallic compounds interface layer formed along the weld boundary near Al substrate. The interface layer consisted of three intermediate layers from Al substrate to weld metal: Mg2Al3 layer, Mg17Al12 layer and Mg17Al12?+?α-Mg solid solution eutectic layer. The tensile strength of the welded joint was 38.4?MPa, which was fairly dependent on the lowest strength of the three intermediate layers. The brittle fracture occurred primarily within the thinnest Mg2Al3 intermediate layer adjacent to Al substrate.  相似文献   

18.
朱浩  张二龙  莫淑娴  马泽铭  王军 《焊接学报》2020,41(1):34-38,66
采用搅拌摩擦焊(FSW)对厚度为4 mm的6061铝合金与AZ31B镁合金进行不同工艺的平板对接试验. 采用光学显微镜(OM)、扫描电镜(SEM)、X射线衍射仪(XRD)及能谱仪(EDS)对接头进行微观组织观察,采用电子万能试验机对接头力学性能进行测试. 结果表明,在接头焊核区(WNZ)中存在着明显的带状组织,带状组织是由插入镁基体中的铝合金条以及弥散分布在条带上的金属间化合物(IMCs)组成;IMCs主要为Al12Mg17和Al3Mg2;铝/镁异种金属FSW接头裂纹形核和扩展均发生在带状组织内;焊接工艺影响带状组织形态和IMCs尺寸及数量;随着转速(n)的增加或焊接速度(v)的降低,带状组织呈弯曲状,长度相对较短且呈不连续分布;当转速(n)过高或焊接速度(v)过低时,带状组织变细,但IMCs数量增多且尺寸变大;铝/镁异种金属FSW接头强度主要取决于带状组织形态和IMCs尺寸及数量.  相似文献   

19.
采用TIG熔钎焊进行5052铝合金和H62黄铜搭接,选用Al-12% Si药芯焊丝作为填充材料,并对接头微观组织和力学性能进行分析.结果表明,Al-12% Si药芯焊丝在黄铜母材表面润湿性较差,较难获得优质的熔钎焊接头.焊缝中黄铜侧界面层附近过渡区内铝含量较高,与部分熔化和溶解的黄铜母材形成了尺寸较大的条状AlCu金属间化合物相,严重影响接头力学性能.黄铜母材侧界面层由两层不同的金属间化合物相组成,从焊缝到黄铜母材分别为Cu9Al4和CuZn.拉伸试验中,试样断裂于黄铜侧过渡区或界面层,断口呈现解理断裂的特征.  相似文献   

20.
In the present study, dissimilar welds of an Al–Mg–Mn alloy and a Zn-coated high-strength low-alloy steel were welded by refill friction stir spot welding. The maximum shear load recorded was approximately 7.8?kN, obtained from the weld produced with a 1600?rev min?1 tool rotational speed. Microstructural analyses showed the formation of a solid–liquid structure of an Al solid solution in Mg–Al-rich Zn liquid, which gives rise to the formation of Zn-rich Al region and microfissuring in some regions during welding. Exposure of steel surface to Mg–Al-rich Zn liquid led to the formation of Fe2Al5 and Fe4Al13 intermetallics. The presence of defective Zn-rich Al regions and Fe–Al intermetallics at the faying surface affects the weld strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号