共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
利用化工流程模拟软件Aspen Plus对异丙醇-环己烷共沸物系的双塔连续萃取精馏过程进行了模拟计算与优化。首先根据溶剂相似相溶原理,先初选出糠醛和硝基苯作为备选溶剂,再通过汽液平衡试验及ChemCAD模拟筛选,确定糠醛为最适宜溶剂,选择NRTL模型作为物性方法,使用RadFrac模块进行模拟计算,并利用灵敏度分析模块对各工艺参数进行优化。结果表明,最适宜工艺方案为:萃取精馏塔理论塔板数为30,原料在第26块板进料,溶剂在第12块板进料,物质的量回流比为1.8,溶剂质量比为3∶1;溶剂回收塔理论板数为15,进料位置在第10块板,物质的量回流比为1.0。分离效果可达到环己烷质量分数为99.74%,异丙醇质量分数为99.61%。模拟和优化结果为分离过程的优化操作和设计提供了依据。 相似文献
3.
萃取精馏分离异丙醇-水共沸体系的模拟与优化 总被引:3,自引:0,他引:3
对异丙醇-水共沸体系的萃取精馏过程进行模拟与优化。以乙二醇为萃取剂,基于UNIFAC模型,使用Aspen Plus化工模拟软件中的RadFrac模块进行萃取精馏模拟,并利用灵敏度分析模块对各工艺参数进行灵敏度分析与优化。结果表明,以乙二醇做萃取剂分离异丙醇-水共沸体系是可行的。对于处理流量5000kg·h-1的异丙醇-水共沸溶液,精馏塔具有22块塔板时,原料进料位置在第16块塔板,萃取液进料位置在第3块塔板,摩尔回流比为1.4,萃取剂与原料的进料比为2∶1,塔顶异丙醇质量分数可达0.9981,萃取精馏塔的分离效果和热负荷达到最优。模拟和优化的结果对工业化设计和生产具备指导意义。 相似文献
5.
利用Aspen Plus软件对异丙醇脱水常规萃取精馏流程、带液相侧线抽出萃取精馏流程及带气相侧线抽出萃取精馏流程进行模拟,并以最小年总费用(TAC)为目标对3种工艺进行全局经济优化。结果表明,与常规萃取精馏相比,带液相侧线抽出萃取精馏流程的TAC下降了6.99%,CO_2排放量减少7.85%;带气相侧线抽出萃取精馏流程的TAC降低了7.42%,CO_2排放量减少9.94%。带气相侧线抽出萃取精馏工艺最优操作参数:T-101塔板数为37,回流比为0.96,萃取剂进料量为8 500 kg/h,T-201塔板数为12,回流比为0.2。该研究结果可为异丙醇脱水萃取精馏的设计及节能提供一定的理论依据。 相似文献
6.
7.
8.
《现代化工》2017,(3)
提出了非均相层析-萃取精馏分离工艺,并基于Aspen Plus对该分离过程进行模拟研究,以得到质量分数为98.3%的异丙醚和99%的异丙醇,水相异丙醚的质量分数小于2×10-5,异丙醇的质量分数小于1×10-4为目标,确定了粗馏塔、醚精制塔、异丙醇精制塔、乙二醇回收塔最佳工艺参数。粗馏塔的理论塔板数为26,进料板位置为第13块理论板,摩尔回流比为0.14。醚精制塔的理论塔板数为23,进料板位置分别为第3和15块理论板,摩尔回流比为0.92。异丙醇精制塔的理论塔板数为25,进料板位置为第3和第18块理论板,摩尔回流比为2.85。乙二醇回收塔的理论塔板数为40,进料板位置为第15块理论板,摩尔回流比为0.08。总体工艺具有流程简单、产品纯度高、易于操作的特点。 相似文献
9.
一般方法难以分离异丙醇-水形成的共沸体系,故选用乙二醇为萃取剂,采取连续萃取精馏的方法应用Aspen Plus软件模拟其分离过程并进行分析。萃取精馏塔的初始参数为物料进料流率4 800 kmol/h、n(异丙醇)∶n(水)=3∶2,理论塔板数26块、物料进料位置为第16块塔板、最小回流比1.4、萃取剂进料位置为第4块塔板,可分离得到质量分数为99.5%的异丙醇,再用Aspen Plus中Model Analysis Tools模块的灵敏度分析对实验进行模拟优化,优化结果为理论塔板数28块、物料进料位置第17块塔板、最小回流比1.5、萃取剂进料位置第4块塔板,优化后异丙醇的质量分数可达到99.8%。 相似文献
10.
利用Aspen Plus模拟软件,以DMSO为萃取剂,采用分壁式萃取精馏对乙酸异丙酯和异丙醇共沸物进行分离模拟研究,采用正交设计对灵敏度分析结果进行进一步优化,得到乙酸异丙酯和异丙醇质量分数分别为99.44%和99.34%,回收萃取剂质量分数99.99%。分壁式萃取精馏过程相比于常规双塔萃取精馏再沸器热负荷降低7.74%,冷凝器热负荷降低22.81%,实现了有效节能。 相似文献
11.
12.
13.
14.
采用萃取精馏的方法分离乙腈-正丙醇的共沸物系。首先利用溶剂选择原理和UNIFAC基团贡献法选出N-甲基吡咯烷酮作为萃取精馏的萃取剂,同时采用NRTL模型对常压下乙腈-正丙醇物系和加入萃取剂N-甲基吡咯烷酮后的汽液平衡进行模拟和实验验证,模拟结果与实验数据吻合较好。然后通过间歇萃取精馏实验进一步考察所选萃取剂的分离效果。结果表明,N-甲基吡咯烷酮能够打破共沸,有效分离乙腈-正丙醇共沸物系。采用有28块理论板的填料塔,萃取剂进料位置为第4块板,溶剂比为1.0,回流比为3,可以从塔顶得到质量分数为98.6%的乙腈产品。最后,用Aspen Plus软件对乙腈-正丙醇物系的连续萃取精馏流程进行了模拟,得出的参数为进一步的工业应用奠定基础。 相似文献
15.
提出了采用分隔壁萃取精馏塔分离乙醇—碳酸二甲酯共沸物的新工艺,利用Aspen Plus软件对该工艺进行了模拟。采用单因素灵敏度分析模块对6个关键工艺条件进行了优化并确定了最佳工艺条件。与常规的双塔及带侧线的单塔萃取精馏工艺相比,再沸器热负荷分别降低42.97%和20.68%,达到了节能降耗、减少设备投资的良好效果。 相似文献
16.
17.
18.
使用Aspen Plus化工流程模拟软件,以二甲基亚砜为萃取剂,研究了分壁式萃取精馏过程和双塔萃取精馏过程对环己烷-环己烯混合物的分离。结果表明,2种方法均可实现二者的有效分离,其中分壁式萃取精馏过程得到的环己烷和环己烯质量分数分别为99.53%和99.25%。与双塔萃取精馏过程相比,分壁式萃取精馏过程再沸器热负荷降低3.92%,冷凝器热负荷降低15.26%,可以有效节能。 相似文献
19.
文章对异丙醇-水共沸体系的连续萃取精馏工艺进行模拟与优化。通过绘制拟二元汽液平衡相图,筛选出合适的萃取剂为三甘醇。确定了双塔连续萃取精馏的工艺流程。结果表明,对于处理流量100 kmol/h的异丙醇-水共沸溶液,精馏塔具有23块塔板时,原料进料位置在第15块塔板,萃取液进料位置在第3块塔板,摩尔回流比为2,溶剂比(萃取剂对原料的摩尔比)为1.2,异丙醇的分离效果达99.92%,萃取剂三甘醇的回收率达99.99%。模拟和优化的结果对工业化设计和生产提供了理论依据。 相似文献