首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present report confirms the presence of Na(+)-K(+)-Mg2+ ATPase in the erythrocyte membranes of the frog Rana balcanica (previously Rana ridibunda) (Schneider et al. 1993; Sofianidou et al. 1994). The Na(+)-K(+)-Mg2+ ATPase activity was 60% reduced by the presence of ouabain. The pH optimum was 8.0, the optimum Mg2+:ATP concentration ratio was 2.2:1. The existence of an ATPase with a high K(m) for ATP (1.48 mmol/l) was postulated. At pH 7.4 and 8.0, the adenine nucleotide pattern of glucose-depleted erythrocytes showed a characteristic reduction in ATP contents. Adenine nucleotide concentrations were higher at pH 7.4 than at pH 8.0. Ouabain inhibited ATP breakdown at both pH values studied. The strongest inhibition was observed at pH 7.4. The decline of the total contents of adenine nucleotides appears to be determined by the rate of AMP breakdown.  相似文献   

2.
The effect of pituitary adenylate cyclase-activating polypeptide (PACAP) on catecholamine secretion with ouabain, an inhibitor of Na(+)-K+ ATPase, in cultured bovine adrenal chromaffin cells was examined, to determine whether movement of Na+, as well as Ca2+, is involved in the secretory process. PACAP (10(-10)-10(-6)M)-induced catecholamine secretion was markedly potentiated by addition of ouabain (10(-5)M). When cultured cells were preincubated with PACAP for 30 min in Ca(2+)-free medium in the presence of ouabain and then stimulated for 15 min with Ca(2+)-containing medium without PACAP or ouabain, their catecholamine secretion was dependent on the external Ca2+ concentration, and 45Ca2+ influx into the cells was increased. When the cells had been preincubated with PACAP and ouabain in Na(+)-free sucrose medium, their Ca(2+)-induced catecholamine secretion was greatly reduced. PACAP increased 22Na+ influx into cells treated with ouabain. These results suggest that stimulation by PACAP and inhibition of the Na(+)-pump both increase the intracellular Na+ level, resulting in increase in Ca2+ influx and catecholamine secretion.  相似文献   

3.
To investigate the relationship among fibre type, oxidative potential, and Na(+)-K+ ATPase concentration in skeletal muscle, adult male Wistar rats weighing 259 +/- 8 g (mean +/- SE) were sacrificed and the soleus (SOL), extensor digitorum longus (EDL), red vastus lateralis (RV), and white vastus lateralis (WV) removed. These muscles were chosen as being representative of the two major fibre type populations: slow twitch (SOL) and fast twitch (EDL, RV, WV) and exhibiting either a high (SOL, EDL, RV) or low (WV) oxidative potential. Na(+)-K+ ATPase concentration (pmol.g-1 wet weight), measured by the [3H]ouabain binding technique, differed (p < 0.01) only between the WV (238 +/- 7.9) and the SOL (359 +/- 9.6), EDL (365 +/- 10), and RV (403 +/- 12). Similarly, muscle oxidative potential as measured by the maximal activity of citrate synthase was different (p < 0.01) only between the WV and the other three muscles. Citrate synthase activity (mumol.min-1.g-1 wet weight) was 4.0 +/- 0.7, 12.3 +/- 0.9, 9.1 +/- 0.7, and 11.3 +/- 1.0 in the WV, SOL, EDL, and RV, respectively. These results indicate that Na(+)-K+ ATPase concentration is not related to the speed of contraction but to the oxidative potential of the muscle. Since chronic activity is a primary determinant of oxidative potential, it would be expected that increases in Na(+)-K+ ATPase would accompany increases in muscle utilization.  相似文献   

4.
The effect of bradykinin (BK), in the presence of ouabain, an inhibitor of Na(+)-K+ ATPase, on catecholamine (CA) secretion was studied in cultured bovine adrenal chromaffin cells, to determine whether Na+, as well as Ca2+, is involved in BK-receptor mediated CA secretion. BK (10(-8)-10(-5) M)-induced CA secretion was markedly potentiated by addition of ouabain (10(-5) M), was blocked by a BK-B2 receptor antagonist, and was decreased in Ca(2+)-free medium. BK-induced increase in 45Ca2+ influx was also potentiated by addition of ouabain. The cultured cells were first incubated with BK for 30 min in Ca(2+)-free medium in the presence or absence of ouabain and then stimulated for 15 min with Ca(2+)-medium without BK or ouabain. Prior stimulation of the cells, BK induced 22Na+ influx and increased Ca(2+)-induced CA secretion and these stimulatory effects of BK were potentiated by added ouabain. When the cells were stimulated with BK and ouabain in Na(+)-free sucrose medium, the Ca(2+)-induced CA secretion was greatly reduced. These results indicated that activation of the BK-B2 receptor and inhibition of the Na+ pump both increase the intracellular Na+ level, resulting in increase in Ca2+ influx and CA secretion.  相似文献   

5.
PURPOSE: To evaluate the effect of 12(R)hydroxyeicosatetraenoic acid (12(R)HETE) on corneal swelling when directly perfused to human and rabbit corneal endothelium. METHOD: Excised rabbit and human corneas were mounted in the in vitro specular microscope and the endothelium was perfused with 12(R)HETE at 10(-5), 10(-6), and 10(-7) mol/l. Both 12(R)HETE and 12(S)HETE were compared at equal molar (10(-6) mol/l) concentrations. The reversal of 12(R)HETE and ouabain corneal swelling was also compared. Endothelial permeability to carboxyfluorescein was measured after 12(R)HETE perfusion. High-performance liquid chromatographic analysis confirmed that 12(R)HETE remained in the perfusion media. RESULTS: 12(R)HETE caused a dose-dependent corneal swelling of 25 +/- 2, 24 +/- 1, and 14 +/- 0.5 microns/hr at 10(-5), 10(-6), and 10(-7) mol/l, respectively. Equal molar concentrations (10(-6) mol/l) of 12(S)HETE did not cause corneal swelling. Removal of the 12(R)HETE from the perfusion media resulted in reversal of corneal swelling whereas corneal swelling induced by ouabain did not reverse after ouabain removal. 12(R)HETE (10(-6) mol/l) perfused to the human corneal endothelium inhibited temperature reversal corneal thinning when compared to the paired corneal endothelium perfused with BSS Plus (Alcon Laboratories, Inc., Fort Worth, TX). Na/K adenosine triphosphatase activity was inhibited by 10(-6) mol/l ouabain by 35%, 10(-6) mol/l 12(R)HETE by 54%, and 10(-6) mol/l 12(S)HETE by 0.5%. Endothelial permeability to carboxyfluorescein was unaffected by 12(R)HETE. CONCLUSION: 12(R)HETE causes corneal swelling by inhibiting endothelial pump function. This inhibition of transport appears to be at least partly mediated by inhibition of endothelial Na/K adenosine triphosphatase.  相似文献   

6.
Toads of the genus Bufo are highly resistant to the toxic effects of digitalis glycosides, and the Na+,K(+)-ATPase of all toad tissues studied to date has been relatively insensitive to inhibition by digitalis and related compounds. In studies of brain microsomal preparations from two toad species, Bufo marinus and Bufo viridis, inhibition of ATPase activity and displacement of [3H]ouabain from Na+,K(+)-ATPase occurred over broad ranges of ouabain or bufalin concentrations, consistent with the possibility that more than one Na+,K(+)-ATPase isoform may be present in toad brain. The data could be fitted to one- or two-site models, both of which were consistent with the presence of Na+,K(+)-ATPase activity with high sensitivity to ouabain and bufalin. Ki (concentration capable of producing 50% inhibition of activity) values for ouabain in the one-site model were in the 0.2 to 3.7 microM range, whereas Ki1 values in the two-site model ranged from 0.085 to 0.85 microM, indicating that brain ATPase was at least three orders of magnitude more sensitive to ouabain than B. marinus bladder ATPase (Ki = 5940 microM). Ouabain was also an effective inhibitor of 86Rb+ uptake in B. marinus brain tissue slices (Ki = 3.1 microM in the one-site model; Ki1 = 0.03 microM in the two-site model). However, the relative contribution of the high ouabain-sensitivity site to the total activity was 17% in the transport assay as compared with 63% in the Na+,K(+)-ATPase enzymatic assay. We conclude that a highly ouabain-sensitive Na+,K(+)-ATPase activity is present and functional in toad brain but that its function may be partially inhibited in vivo.  相似文献   

7.
A fraction from normal human plasma inhibiting Na(+)-K(+)-ATPase has been recently identified as lysophosphatidylcholine (LPC). The aim of this study was to investigate the existence of a relationship between the activity of the cellular membrane Na(+)-K(+)-ATPase and plasma LPC in human diabetes. We studied 10 patients with insulin-dependent-diabetes mellitus (IDDM), 14 patients with non-insulin-dependent diabetes mellitus (NIDDM), and 10 sex- and age-matched control subjects. Plasma LPC concentrations were increased in both IDDM and NIDDM patients compared with control subjects. Na(+)-K(+)-ATPase activity was reduced in both groups of patients in erythrocyte and platelet membranes. There was a significant correlation between the concentrations of plasma LPC and Na(+)-K(+)-ATPase activity in both erythrocyte and platelet membranes (P < 0.01). To investigate the effect of LPC on the enzyme, Na(+)-K(+)-ATPase activity was determined in erythrocyte membranes obtained from six healthy subjects after in vitro incubation with increasing concentrations of LPC (1-10 microM). Enzymatic activity was significantly reduced by in vitro LPC at a concentration of 2.5 microM, with a further decrease at 5 microM. These data suggest that the decrease in Na(+)-K(+)-ATPase activity in diabetes might be due to increased LPC concentrations.  相似文献   

8.
The excitatory effects of veratridine on slowly adapting pulmonary stretch receptors (SARs) were studied before and after administration of ouabain (a Na+-K+ ATPase inhibitor) in anesthetized, artificially ventilated rabbits after vagus nerve section. Administration of veratridine (40 microg/kg) stimulated SAR activity but did not significantly alter tracheal pressure. Administration of ouabain (50 microg/kg) initially stimulated SAR activity during both inflation and deflation, but after 20 min, two different types of SAR responses were observed; one became silent at the peak, of inflation only, and the other maintained excitatory activity during both inflation and deflation phases. Veratridine usually inhibited SAR activity in ouabain-treated animals, irrespective of the difference of ouabain effects. These results suggest that veratridine-induced stimulation of SARs is closely related to the change in the Na+ ion gradient, which is regulated by Na+ pump activity.  相似文献   

9.
In this experiment, intracellular K+ concentration ([K+]i) and ATPase activity of myocardiocytes were measured in early stage of burn injury. Comparing with control group, it was found that, 1. [K+]i were decreased after burn injury, [K+]i of 1st, 3rd, 8th and 24th hours were decreased to 96.2 +/- 1.3%, 85.8 +/- 1.3%, 65.9 +/- 1.0% and 73.7 +/- 1.1% of normal, respectively. 2. Cardiac sarcolemma total ATPase, Mg(2+)-ATPase and Na(+)-K(+)-ATPase activities were all reduced significantly at 8th hour after injury. These results suggest that, burn injury accelerates K+ efflux current, but inhibits K+ influx current, and the reduction of Na(+)-K(+)-ATPase activity is one reason of decrease of [K+]i after injury.  相似文献   

10.
The effects of histamine on catecholamine secretion from cultured bovine adrenal chromaffin cells were studied in the presence of ouabain, an inhibitor of Na+-K+ ATPase. The purpose of this study was to determine whether Na+, as well as Ca2+, was involved in histamine receptor-mediated catecholamine secretion. Histamine (10(-8)-10(-5) M)-induced catecholamine secretion was markedly potentiated by addition of ouabain (10(-5) M) and was inhibited by a histamine-H1 receptor antagonist or incubation in a Ca2+-free medium. Histamine-induced 45Ca2+ influx was also potentiated by addition of ouabain. Ouabain alone or in the presence of histamine increased 22Na+ influx into the cells. In an additional set of experiments, cells were preincubated in the presence or absence of Na+ for 30 min (+/- histamine and ouabain), washed and then catecholamine secretion was measured following exposure to 2.2 mM Ca2+ for 15 min. Preincubation with histamine alone with or without Na+ had no effect of Ca2+-induced secretion of catecholamine. Preincubation with ouabain alone or with ouabain plus histamine produced a slight stimulation of catecholamine secretion in Na+-free medium and a large stimulation in Na+-containing medium. These results suggested that stimulation of the histamine-H1 receptor and inhibition of the Na+ pump both increase intracellular Na+ levels, resulting in increases in Ca2+ influx and catecholamine secretion.  相似文献   

11.
The presence of subunit proteins, 1H9 for the alpha-subunit and 2B6 for the beta-subunit, of H(+)-K+ ATPase and its activity in tubulovesicles and intracellular canaliculi of gastric parietal cells were immunocytochemically and enzyme cytochemically examined. Specimens were taken from healthy human volunteers by endoscopic biopsy in resting, tetragastrin-stimulated and omeprazole-inhibited conditions. H(+)-K+ ATPase was present in both intracellular canaliculi and tubulovesicles in these three conditions. Gold particles of the alpha-subunit decreased in number, and those showing the beta-subunit increased under both gastrin-stimulating and omeprazole-inhibiting conditions compared with parietal cells in the resting state. We suggest that the administration of tetragastrin and omeprazole alter the turnover rate of each subunit of H(+)-K+ ATPase, resulting in the difference of the proportions of alpha- and beta-subunits. Moreover, the activity of H(+)-K+ ATPase was detected strongly beneath the membrane of microvilli and weakly in that of tubulovesicles under these three conditions. After 7 days of daily oral omeprazole intake, H(+)-K+ ATPase in parietal cells were detected in intracellular canaliculi and tubulovesicles. However, the H(+)-K+ ATPase activity in tubulovesicles was diminished 1 h after omeprazole intake, and the activity in intracellular canaliculi was completely inhibited even 3 h after omeprazole administration. These results show that omeprazole inhibited the H(+)-K+ ATPase activity in both intracellular canaliculi and tubulovesicles.  相似文献   

12.
Using an in vitro cell system and Cs+ NMR techniques we were able to show that porcine aortic endothelial cells (PAEC) reduce their Na(+)-K(+)-ATPase activity upon an increase in intracellular cAMP. Reduction in the pump rate was due to phosphorylation of the alpha-subunit of the ATPase as shown by immunoprecipitation. Apart from a pump inhibiton using 8-Br-cAMP and IBMX, we were also able to show that changes in the Na(+)-K(+)-ATPase activity could be mediated by the adenosine-A2 and prostaglandin receptor agonists 5'-N-Ethylcarboxamidoadenosine and Iloprost, respectively. Parallel to a decrease in pump activity we also observed a decrease in intracellular Cs+, indicating opening of K+ channels.  相似文献   

13.
The present investigation was designed to determine whether atrial natriuretic peptides consisting of amino acids 1-30 (i.e. long-acting natriuretic peptide), 31-67 (vessel dilator), 79-98 (kaliuretic peptide), and 99-126 [atrial natriuretic factor (ANF)] of the 126 amino acid ANF prohormone inhibit sodium-potassium-ATPase as part of their mechanism(s) of action for producing a natriuresis and/or kaliuresis. Kaliuretic peptide, long-acting natriuretic peptide, vessel dilator and ANF at their 10(-11) M concentrations inhibited Na(+)-K(+)-ATPase 39.5%, 27.8%, 19.2%, and 4% respectively, in bovine renal medulla, whereas their inhibition in renal cortical membranes was 37.5%, 27.5%, 20%, and 0%, respectively. Ouabain (0.5 mM) inhibited kidney medullary Na(+)-K(+)-ATPase 45% and in the cortex, 38%. There was no additive effect of any of these peptides with ouabain suggesting that they are interacting with the same site on the Na(+)-K(+)-ATPase as ouabain. To help elucidate the mechanism of these peptides' interaction with Na(+)-K(+)-ATPase, naproxen (0.5 mM), an inhibitor of prostaglandin synthesis, and direct measurement of prostaglandin E2 by RIA were used. Naproxen completely blocked the inhibition of Na(+)-K(+)-ATPase by kaliuretic peptide, long-acting natriuretic peptide, and vessel dilator suggesting that their inhibition of Na(+)-K(+)-ATPase in both the kidney medulla and cortex are mediated by prostaglandins. Direct measurement of prostaglandin E2 revealed that kaliuretic peptide > long-acting natriuretic peptide > vessel dilator increased prostaglandin E2 synthesis, whereas ANF did not have any effect. Of interest, angiotensin II and ouabain inhibition of Na(+)-K(+)-ATPase were also completely blocked by naproxen.  相似文献   

14.
The effect of endothelins (ET-1 and ET-3) on 86Rb+ uptake as a measure of K+ uptake was investigated in cultured rat brain capillary endothelium. ET-1 or ET-3 dose-dependently enhanced K+ uptake (EC50 = 0.60 +/- 0.15 and 21.5 +/- 4.1 nM, respectively), which was inhibited by the selective ETA receptor antagonist BQ 123 (cyclo-D-Trp-D-Asp-Pro-D-Val-Leu). Neither the selective ETB agonists IRL 1620 [N-succinyl-(Glu9,-Ala11,15)-ET-1] and sarafotoxin S6c, nor the ETB receptor antagonist IRL 1038 [(Cys11,Cys15)-ET-1] had any effect on K+ uptake. Ouabain (inhibitor of Na+,K(+)-ATPase) and bumetanide (inhibitor of Na(+)-K(+)-Cl- cotransport) reduced (up to 40% and up to 70%, respectively) the ET-1-stimulated K+ uptake. Complete inhibition was seen with both agents. Phorbol 12-myristate 13-acetate (PMA), activator of protein kinase C (PKC), stimulated Na+,K(+)-ATPase and Na(+)-K(+)-Cl- cotransport. ET-1- but not PMA-stimulated K+ uptake was inhibited by 5-(N-ethyl-N-isopropyl)amiloride (inhibitor of Na+/H+ exchange system), suggesting a linkage of Na+/H+ exchange with ET-1-stimulated Na+,K(+)-ATPase and Na(+)-K(+)-Cl- cotransport activity that is not mediated by PKC.  相似文献   

15.
The retinal pigment epithelium is a transporting epithelium that helps regulate the volume and composition of the subretinal space surrounding photoreceptor outer segments. The capacity of the RPE to actively transport Na+ and K+ between the retina and the blood supply depends on the localization of the Na+, K(+)-ATPase to the apical membrane, but in culture this polar distribution can be lost. Using primary cultures of Xenopus RPE, we examined the anatomical and functional polarity of this electrogenic pump. Confluent monolayers were established on Matrigel-coated microporous filters and cultured for 2-4 weeks in serum-free defined medium. Electrogenic pump activity at the apical and basolateral membranes was assayed by mounting the monolayer and filter in an Ussing chamber and exposing one or the other surface to ouabain while recording the apical (Vap) and basolateral (Vba) membrane potentials with an intracellular microelectrode. The addition of 0.2 mM ouabain to the apical bath caused Vap to rapidly depolarize by about 4 mV, consistent with the inhibition of a hyperpolarizing pump current at that membrane. When ouabain was added to the basal bath, however, it had no effect on Vba, suggesting the absence of a functional Na(+)-K+ pump on the basolateral membrane. To confirm these electrophysiological results, we examined the distribution of the Na+, K(+)-ATPase catalytic component using an antiserum specific for the bovine kidney alpha subunit. Antibody labeling of cultures was highly polarized, with strong reaction present on the apical microvilli, but not the basolateral cell surfaces. The findings of this study indicate that the Na(+)-K+ pump in monolayers of Xenopus RPE, as in native RPE, is located mainly in the apical membrane, providing evidence of a functionally intact transport pathway in these primary cultures.  相似文献   

16.
The sodium-potassium activated and magnesium dependent adenosine-5'-triphosphatase (Na(+)-K(+)/Mg(+2) ATPase EC.3.6.1.3.) activity and lipid peroxidation and early ultrastructural findings were determined in rat brain at the acute stage of ischaemia produced by permanent unilateral occlusion of the middle cerebral artery (MCA). The effects of the pretreatment with intravenous high-dose methylprednisolone (MP) on these biochemical indices and ultrastructural findings were also evaluated in the same model. The rats were divided into four groups. In group I, 10 rats were used to determine Na(+)-K(+)/Mg(+2) ATPase activity and the extent of lipid peroxidation by measuring the malondialdehyde (MDA) content and normal ultrastructural findings. In group II on 20 rats, only subtemporal craniectomy was done in order to determine the effects of the surgical procedure on these indices and findings. This group was treated intravenously with saline solution before occlusion. In group III with MCA occlusion, saline solution was administered intravenously to 20 rats in the same amount of methylprednisolone used in group IV, ten minutes before the occlusion. In Group IV, a single high-dose (30 mg/kg) of methylprednisolone was administered intravenously, ten minutes before occlusion in 20 rats. After occlusion of the middle cerebral artery, Na(+)-K(+)/Mg(+2) ATPase activity was decreased promptly in the first ten minutes in the ischaemic hemisphere and remained at a lower level than the contralateral hemispheres in the same group and the normal levels in group I, during 120 minutes of ischaemia. A single dose methylprednisolone pretreatment prohibited the inactivation of Na(+)-K(+)/Mg(+2) ATPase. On the other hand, there was significant difference in malondialdehyde content between group I and group III. Malondialdehyde levels were significantly increased following ischaemia and a non-significant increase was observed in the contralateral hemisphere. Methylprednisolone treatment significantly decreased malondialdehyde content on the side of the ischaemic hemisphere. We conclude that there is a positive relationship between membrane-bound enzyme Na(+)-K(+)/Mg(+2) ATPase activity, malondialdehyde content and early ultrastructural changes in the treated group with MP. These data suggest that the pretreatment injection of high doses (30 mg/kg) methylprednisolone contribute to the protection of the brain from ischaemia with stabilization of the cell membrane by effecting the lipid peroxidation and the activation of Na(+)-K(+)/Mg(+2) ATPase.  相似文献   

17.
The influence of elevated glucose concentration on resting membrane voltage, electrogenic Na(+)-K(+)-ATPase, and ATP-sensitive potassium channels (KATP channels) was studied in cultured bovine retinal capillary pericytes using conventional microelectrodes. The resting membrane voltage in cells grown in medium containing 5 mM glucose (control) averaged -27 +/- 1.2 mV (mean +/- SE, n = 26) and was not different from cells grown in medium containing 22.5 mM glucose (-26 1.2 mV, n = 26). Addition of ouabain (10(-4) M), a specific inhibitor of the Na(+)-K(+)-ATPase, depolarized the membrane potential by 3.6 +/- 0.4 mV (n = 10) in cells grown under control conditions and 0.7 +/- 0.2 mV (n = 6) in cells grown under elevated glucose conditions. Thus, electrogenic activity of the Na(+)-K(+)-ATPase was significantly (P < 0.0001) reduced to 19% compared with control conditions. Electrogenic Na(+)-K(+)-ATPase activity could be partially restored (ouabain-induced depolarization delta V = 2.0 +/- 0.2 mV, n = 6) in cells grown with high glucose in the presence of the aldose reductase inhibitor tolrestat (10(-5) M). The potassium channel opener Hoe 234 (10(-6) M) induced membrane potential hyperpolarization in control cells (delta V = 7.3 +/- 1.2 mV, n = 13), which could be completely inhibited by the KATP channel blocker glibenclamide (10(-7) M, n = 5). This indicates that pericytes possess KATP channels. The effect of KATP channels on membrane voltage was not significantly changed (P = 0.16) in cells cultured under high-glucose conditions (delta V = 9.6 +/- 2.0 mV, n = 6).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Effects of increasing extracellular K+ or intracellular Na+ concentrations on glucose metabolism in cultures of rat astroglia and neurons were examined. Cells were incubated in bicarbonate buffer, pH 7.2, containing 2 mM glucose, tracer amounts of [14C]deoxyglucose ([14C]dGlc), and 5.4, 28, or 56 mM KCl for 10, 15, or 30 min, and then for 5 min in [14C]dGlc-free buffer to allow efflux of unmetabolized [14C]dGlc. Cells were then digested and assayed for labeled products, which were shown to consist of 96-98% [14C]deoxyglucose 6-phosphate. Increased K+ concentrations significantly raised [14C]deoxyglucose 6-phosphate accumulation in both neuronal and mixed neuronal-astroglial cultures at 15 and 30 min but did not raise it in astroglial cultures. Veratridine (75 microM), which opens voltage-dependent Na+ channels, significantly raised rates of [14C]dGlc phosphorylation in astroglial cultures (+20%), and these elevations were blocked by either 1 mM ouabain, a specific inhibitor of Na+,K(+)-ATPase (EC 3.6.1.37), or 10 microM tetrodotoxin, which blocks Na+ channels. The carboxylic sodium ionophore, monensin (10 microM), more than doubled [14C]dGlc phosphorylation; this effect was only partially blocked by ouabain and unaffected by tetrodotoxin. L-Glutamate (500 microM) also stimulated [14C]dGlc phosphorylation in astroglia--not through N-methyl-D-aspartate or non-N-methyl-D-aspartate receptor mechanisms but via a Na(+)-dependent glutamate-uptake system. These results indicate that increased uptake of Na+ can stimulate energy metabolism in astroglial cells.  相似文献   

19.
The potent anticancer drug cis-diamminedichloroplatinum (II) (CDDP) interferes early with electrolyte transport by the renal proximal tubule. To study the early effects of platinum coordination complexes on apical Na(+)-coupled transport systems, we examined the effect of increasing concentrations of CDDP, trans-diamminedichloroplatinum (II) (TDDP) and cis-diammine-1,1-cyclobutane-dicarboxylate platinum (II) (CBDCA) on Na(+)-coupled uptake of P(i), methyl-alpha-D-glucopyranoside (MGP) and L-alanine by rabbit proximal tubule cells in primary culture. At 17 microM CDDP and 540 microM CBDCA, 1) cell viability (lactate dehydrogenase release) and ATP content were unaffected, 2) Na(+)-K(+)-ATPase activity was reduced by 40%, 3) Na(+)-coupled uptake of MGP and P(i) was reduced, whereas 4) Na(+)-coupled uptake of alanine rose to twice the control value. Alterations of Na(+)-coupled uptake of P(i), MGP and alanine were due to changes in Km, with no significant change in Vmax. At 333 microM TDDP, Na(+)-dependent P(i) and MGP uptake decreased, whereas Na(+)-independent uptake increased markedly and was associated with a decline in cell viability and ATP content. We conclude that 1) the TDDP-induced decrease in Na+/P(i) and Na+/glucose cotransport was associated with reduced cell viability, 2) both CDDP and CBDCA had different effects on Na+/P(i), Na+/glucose and Na+/alanine cotransport, arguing against an alteration of the Na+ gradient due to reduced Na(+)-K(+)-ATPase activity and 3) CBDCA induced alterations of Na(+)-coupled uptake similar to those of CDDP at concentrations 20 to 30 times higher.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The relative contributions of Na(+)-K(+)-ATPase pumps and Na(+)-K(+)-Cl- cotransport to total rubidium (Rb+) influx into primary cultures of renal tubule cells (PC.RC) and cells transformed either with the wild-type or a temperature-sensitive mutant of the simian virus 40 (SV40), were measured under various growth conditions. The Na(+)-K(+)-ATPase-mediated component represented 74% and 44-48% of total Rb+ influx into PC.RC and SV40-transformed cells, respectively. Proliferating transformed cells showed substantial ouabain-resistant bumetanide-sensitive (Or-Bs) Rb+ influx (41-45% of total) which indicated the presence of a Na(+)-K(+)-Cl- cotransport. The Or-Bs component of Rb+ influx was greatly reduced when temperature-sensitive transformed renal cells (RC.SVtsA58) grown in Petri dishes or on permeable filters were shifted from the permissive (33 degrees C) to the restrictive temperature (39.5 degrees C) to arrest cell growth. The ouabain-sensitive Rb+ influx mediated by the Na(+)-K(+)-ATPase, the total and amiloride-sensitive Na+ uptakes were not modified following inhibition of cell proliferation. A similar fall in the Or-Bs influx was obtained when renal tubule cells transformed by the wild-type SV40 (RC.SV) were incubated with the K+ channel blocker, tetraethylammonium (TEA) ion, which we had previously shown to arrest cell growth without affecting cell viability (Teulon et al.: J. Cell. Physiol., 151:113-125, 1992). Reinitiation of cell growth by removal of TEA or return to 33 degrees C of the temperature-sensitive cells restored the Or-Bs component of Rb influx. Taken together, these results indicate that the Na(+)-K(+)-Cl- cotransport activity is critically dependent on cell growth conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号