共查询到18条相似文献,搜索用时 62 毫秒
1.
随着移动互联网的发展,针对Android平台的恶意代码呈现急剧增长。而现有的Android恶意代码分析方法多聚焦于基于特征对恶意代码的检测,缺少统一的系统化的分析方法,且少有对恶意代码分类的研究。基于这种现状,提出了恶意软件基因的概念,以包含功能信息的片段对恶意代码进行分析;基于Android平台软件的特点,通过代码段和资源段分别提取了软件基因,其中代码段基因基于use-def链(使用-定义链)进行形式化。此外,分别提出了基于恶意软件基因的检测框架和分类框架,通过机器学习中的支持向量机对恶意软件基因进行学习,有较高的检测率和分类正确率,其中检测召回率达到了98.37%,验证了恶意软件基因在分析同源性中的作用。 相似文献
2.
3.
随着Android操作系统的广泛应用,基于Android平台的应用程序的数量日益增长。如何有效地识别恶意软件,对保护手机的安全性至关重要。提出了基于权限和API特征结合的Android恶意软件检测方法,该方法通过反编译apk文件来提取权限特征和API特征,并将两者相结合作为一个整体的特征集合。在此基础上,采用分类算法进行恶意软件的甄别。实验结果表明,该方法的判别准确率高于权限集合或API集合单独作为特征的判别方法,从而能更加有效地检测Android恶意应用程序。 相似文献
4.
随着移动终端恶意软件的种类和数量不断增大,本文针对Android系统恶意软件单特征检测不全面、误报率高等技术问题,提出一种基于动静混合特征的移动终端恶意软件检测方法,以提高检测的覆盖率、准确率和效率。该方法首先采用基于改进的CHI方法和凝聚层次聚类算法优化的K-Means方法构建高危权限和敏感API库,然后分别从静态分析和动态分析两个方面提取移动终端系统混合特征。在静态分析中,首先反编译APK文件,分析得到权限申请特征和敏感API调用特征;在动态分析中,通过实时监控APP运行期间的动态行为特征,分别提取其在运行过程中的敏感API调用频次特征和系统状态等特征信息;接着分别使用离差标准化、TF-IDF权重分析法和优序图法对混合特征进行归一化和特征权重赋值处理。最后,通过构建测评指标对本文所提基于混合特征恶意软件检测方法进行对比测试验证和评价分析。实验结果表明:本方法针对Android系统恶意软件的检测具有好的准确率和效率,可有效提高移动终端恶意软件检测的精确度。 相似文献
5.
基于机器学习的Android平台恶意软件检测方法提取的权限信息特征维度高且类别区分能力弱,导致检测精度低及复杂度高。为此,提出一种基于特征占比差与加权随机森林的恶意软件检测方法。通过获取Android软件的权限信息和硬件组件信息,分析各类特征的占比差,并将特征属性作为分类模型的输入。在此基础上,对随机森林中的树模型赋予不同的权值,验证树模型对最终分类结果的影响。实验结果表明,与神经网络方法相比,基于特征占比差的特征构建方法所提取的特征具有较好的类别区分能力,且改进后的随机森林能提高恶意软件检测的准确性。 相似文献
6.
机器学习为恶意软件检测提供了一种新的视角,它可以从大量的样本中自动学习和提取特征,然后使用这些特征进行预测。通过对Android系统的权限、API调用以及动态行为等方面进行深入的分析,研究人员已经成功地发现了许多与恶意软件相关的显著特征。对Android恶意软件的特征进行了深入的分析,探讨几种主流的机器学习算法,并对它们的性能进行了对比。研究结果表明,该算法在检测Android恶意软件时可以提高实时性和准确性,从而提高了检测的精确性和效率。 相似文献
7.
Android由于其广泛的普及率使得其平台上的恶意软件数量不断增加,针对目前大部分方法采用单一特征和单一算法进行检验,准确率不高的不足,提出了一种基于多特征与Stacking算法的静态检测方法,该方法能够弥补这两方面的不足. 首先使用多种特征信息组成特征向量,并且使用Stacking集成学习算法组合Logistic,SVM,k近邻和CART决策树多个基本算法,再通过训练样本进行学习形成分类器. 实验结果表明,相对于使用单一特征和单一算法其识别准确率得到提高,可达94.05%,该分类器对测试样本拥有较好的识别性能. 相似文献
8.
9.
针对Android恶意软件检测中数据不平衡导致检出率低的问题,提出一种基于Bagging-SVM(支持向量机)集成算法的Android恶意软件检测模型。首先,提取AndroidManifest.xml文件中的权限信息、意图信息和组件信息作为特征;然后,提出IG-ReliefF混合筛选算法用于数据集降维,采用bootstrap抽样构造多个平衡数据集;最后,采用平衡数据集训练基于Bagging算法的SVM集成分类器,通过该分类器完成Android恶意软件检测。在分类检测实验中,当良性样本和恶意样本数量平衡时,Bagging-SVM和随机森林算法检出率均高达99.4%;当良性样本和恶意样本的数量比为4:1时,相比随机森林和AdaBoost算法,Bagging-SVM算法在检测精度不降低的条件下,检出率提高了6.6%。实验结果表明所提模型在数据不平衡时仍具有较高的检出率和分类精度,可检测出绝大多数恶意软件。 相似文献
10.
Android系统是市场占有率最高的移动端操作系统,然而Android系统上的恶意应用种类和数量疯狂增长,对用户构成极大的威胁,因此对Android系统恶意软件检测方法的研究具有非常重要的意义.分析Android系统的安全机制,介绍Android恶意软件的分类,总结恶意软件的攻击技术,研究目前的检测方法,比较各类方法的... 相似文献
11.
应用程序的行为语义在Android恶意应用检测中起着关键作用。为了区分应用的行为语义,文中提出适合用于Android恶意应用检测的特征和方法。首先定义广义敏感API,强调要考虑广义敏感API的触发点是否与UI事件相关,并且要结合应用实际使用的权限。该方法将广义敏感API及其触发点抽象为语义特征,将应用实际使用的权限作为语法特征,再利用机器学习分类方法自动检测应用是否具有恶意性。在13226个样本上进行了对比实验,实验结果表明,该方法的分析速度快且开销小,选取的特征集使Android恶意应用检测得到很好的结果;经机器学习分类技术的比较,我们选择随机森林作为检测方案中的分类技术,所提特征策略的分类准确率达到96.5%,AUC达到0.99,恶意应用的分类精度达到98.8%。 相似文献
12.
针对静态检测和动态检测方式存在的问题,提出了一种基于混合方式的恶意移动应用检测方法。该方法采用静态分析和动态分析相结合的方式,通过静态分析获取权限特征和函数调用特征,通过动态分析在沙盒环境下借助于事件仿真获取系统调用序列并提取函数调用依赖关系特征;在此基础上,提出了一种基于集成学习的分类器构造方法,区分恶意应用和正常应用。在来自于第三方应用市场中的3000个样本集上进行了实验验证,结果表明基于混合方式的恶意应用检测效果要优于基于静态分析的方式和基于动态分析的方式;考虑多种类型特征的样本上的检测精度要高于采用单一特征刻画的样本上的值;采用集成分类器具有较好的检测精度。 相似文献
13.
14.
Feature Selection for Malware Detection on the Android Platform Based on Differences of IDF Values 下载免费PDF全文
Journal of Computer Science and Technology - Android is the mobile operating system most frequently targeted by malware in the smartphone ecosystem, with a market share significantly higher than... 相似文献
15.
内核恶意软件对操作系统的安全造成了严重威胁.现有的内核恶意软件检测方法主要从代码角度出发,无法检测代码复用、代码混淆攻击,且少量检测数据篡改攻击的方法因不变量特征有限导致检测能力受限.针对这些问题,提出了一种基于数据特征的内核恶意软件检测方法,通过分析内核运行过程中内核数据对象的访问过程,构建了内核数据对象访问模型;然后,基于该模型讨论了构建数据特征的过程,采用动态监控和静态分析相结合的方法识别内核数据对象,利用EPT监控内存访问操作构建数据特征;最后讨论了基于数据特征的内核恶意软件检测算法.在此基础上,实现了内核恶意软件检测原型系统MDS-DCB,并通过实验评测MDS-DCB的有效性和性能.实验结果表明:MDS-DCB能够有效检测内核恶意软件,且性能开销在可接受的范围内. 相似文献
16.
本文构建的静态检测系统主要用于检测Android平台未知恶意应用程序.首先,对待检测应用程序进行预处理,从Android Manifest.xml文件中提取权限申请信息作为一类特征属性;如待检测应用程序存在动态共享库,则提取从第三方调用的函数名作为另一类特征属性.对选取的两类特征属性分别选择最优分类算法,最后根据上述的两个最优分类算法对待检测应用程序的分类结果判定待检测应用程序是否为恶意应用程序.实验结果表明:该静态检测系统能够有效地检测出Android未知恶意应用程序,准确率达到95.4%,具有良好的应用前景. 相似文献
17.
针对Android恶意软件泛滥的局面,提出了一种基于行为的恶意软件动态检测的方法。首先,综合收集软件运行时的动态信息,包括软件运行时系统的信息和软件的内核调用信息,并将内核调用序列截断成定长短序列的形式。其次,将各方面信息统一为属性、属性值的形式。以信息增益作为指标,选用CA.5算法筛选出信息增益高、作用不重叠的属性,并依据信息增益的大小为各属性正比分配权重因子。最后,用K最近邻算法完成机器学习,识别出与样本类似的恶意软件,并将未知类型的软件标记为疑似恶意。实验结果表明,该方法识别率高、误报率低。通过增大学习样本库,识别的效果可以进一步提高。 相似文献
18.
基于语义的恶意代码行为特征提取及检测方法 总被引:5,自引:0,他引:5
提出一种基于语义的恶意代码行为特征提取及检测方法,通过结合指令层的污点传播分析与行为层的语义分析,提取恶意代码的关键行为及行为间的依赖关系;然后,利用抗混淆引擎识别语义无关及语义等价行为,获取具有一定抗干扰能力的恶意代码行为特征.在此基础上,实现特征提取及检测原型系统.通过对多个恶意代码样本的分析和检测,完成了对该系统的实验验证.实验结果表明,基于上述方法提取的特征具有抗干扰能力强等特点,基于此特征的检测对恶意代码具有较好的识别能力. 相似文献