首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Experimental autoimmune encephalomyelitis (EAE) can be effectively treated during disease exacerbation by administration of a peptide corresponding to the major T cell epitope of myelin basic protein (MBP), but the mechanism by which T cell tolerance leads to clinical improvement is not well-defined. Acute exacerbations of EAE are accompanied by an infiltration of blood-borne leukocytes into the brain and spinal cord, where they mediate inflammation and demyelination. To investigate peptide effects on infiltrating cells, we collected cerebrospinal fluid (CSF) from (PL/JxSJL)F1 mice with MBP-induced EAE. Pleiocytosis by lymphocytes, neutrophils, and macrophages was seen throughout the course of relapsing-remitting disease. A single administration of the MBP peptide analog, Ac1-11[4Y], reduced disease severity, accompanied by a dramatic and selective loss of neutrophil pleiocytosis. A longer course of peptide therapy resulted in complete recovery from clinical signs of disease, and decreased pleiocytosis by all cell types. Clinical severity throughout the course of disease and therapy was directly related to the degree of infiltration by neutrophils and macrophages, and the clinical improvement following peptide therapy was accompanied by decreased central nervous system (CNS) expression of chemoattractants for these cell types. These observations support a model of disease exacerbation mediated by phagocytic cellular infiltration under the ultimate control of T cell-derived factors, amenable to treatment by down-regulation of the T cell activation state.  相似文献   

2.
Pathological differentiation of oligodendroglioma and mixed oligoastrocytoma from astrocytoma is difficult, relying on morphological characteristics due to the lack of reliable immunohistochemical stains. Oligodendrocytes, the presumed cell of origin of oligodendrogliomas, highly express the genes encoding myelin basic protein (MBP) and proteolipid protein (PLP). We analyzed the expression of these genes to determine whether they might be useful molecular markers of oligodendrocytic tumors. MBP and PLP were highly expressed in all oligodendrogliomas and minimally expressed in glioblastomas multiforme. MBP was highly expressed in mixed oligoastrocytomas, whereas PLP expression was minimal. The association between tumor classification and expression of the MBP and PLP genes was statistically significant. Expression of these genes may serve as a useful molecular marker for some subtypes of human gliomas.  相似文献   

3.
We explore here if vaccination with DNA encoding an autoantigenic peptide can suppress autoimmune disease. For this purpose we used experimental autoimmune encephalomyelitis (EAE), which is an autoaggressive disease in the central nervous system and an animal model for multiple sclerosis. Lewis rats were vaccinated with DNA encoding an encephalitogenic T cell epitope, guinea pig myelin basic protein peptide 68-85 (MBP68-85), before induction of EAE with MBP68-85 in complete Freund's adjuvant. Compared to vaccination with a control DNA construct, the vaccination suppressed clinical and histopathological signs of EAE, and reduced the interferon gamma production after challenge with MBP68-85. Targeting of the gene product to Fc of IgG was essential for this effect. There were no signs of a Th2 cytokine bias. Our data suggest that DNA vaccines encoding autoantigenic peptides may be useful tools in controlling autoimmune disease.  相似文献   

4.
In vivo acylation of rat brain myelin proteolipid protein   总被引:1,自引:0,他引:1  
Examination of brain myelin proteins by sodium dodecyl sulfate-gel electrophoresis followed by fluorography clearly showed that both proteolipid protein (PLP) and DM-20 were acylated 24 h after the intracerebral injection of 30-day-old rats with [3H]palmitic acid. The radioactivity associated with PLP remained after purification, re-electrophoresis, and fluorography. Most of the radioactivity associated with PLP was removed when the gels were treated with hydroxylamine and then fluorographed, indicating that fatty acids were bound to PLP by ester linkage. Cleavage of purified PLP with methanolic sodium hydroxide readily released almost all protein-bound radioactivity. Thin layer chromatography of this material on both silver nitrate and reverse-phase plates provided evidence that most of the radioactivity co-migrated with methyl palmitate (77%) and methyl stearate (19%); however, some radioactivity was associated with methyl oleate (4%). Gas-liquid chromatography of the fatty acids associated with PLP distinctly revealed the presence of methyl palmitate and a detectable peak of methyl stearate.  相似文献   

5.
A cDNA was isolated from a zebra finch telencephalon cDNA library that encodes the myelin proteolipid protein. The clone was 2874 nucleotides long containing an open reading frame of 831 nucleotides that encoded a 277 amino acid myelin proteolipid protein. The 5'- and 3' untranslated regions were 112 and 1931 nucleotides, respectively. In Northern blots the clone hybridized to 3 bands of 3.5, 2.4 and 1.5 Kb in mouse brain RNA, but to only a single band of 3.0 kb in zebra finch brain RNA, suggesting the lack of alternative polyadenylation sites within the 3' untranslated region of the zebra finch PLP mRNAs. There was a small degree of homology between the zebra finch and chicken PLP 5' untranslated regions, but relatively little homology of the 5' untranslated regions of the zebra finch PLP cDNA clone with the homologous regions of PLP cDNAs of many mammalian species. Except for a small stretch of considerable homology, there was little overall homology with the 3' untranslated regions of mammalian PLP mRNAs. Approximately 10% (i.e. 28) of the amino acids in the zebra finch PLP differed from mammalian PLP, with most of these changes located within exon 3. There were 16 amino acid changes between zebra finch and chicken, suggesting that greater sequence variation in PLP structure is tolerated among avian species than among mammalian species.  相似文献   

6.
It has been reported previously that the induction phase of experimental allergic encephalomyelitis (EAE) is highly sensitive to systemic blockade of stimulation via MHC class II molecules and co-stimulation via the CD28:CD80/CD86 pathways. In contrast, the effector phases of EAE were relatively unaffected by similar treatments using MHC class II antigen (Ag)-specific mAb and cytotoxic T lymphocyte antigen (CTLA)4-Ig fusion proteins in some studies. This has been attributed to different sensitivities of effector cell function or the poor penetrance of inhibitory proteins into the central nervous system (CNS). To examine this question further, MHC class II Ag-specific mAb and CTLA4-Ig were delivered directly into the CNS following EAE induction, and both were found to inhibit disease. While it was found that systemic administration of mouse CTLA4-Ig could also inhibit the progression of effector immune responses when administered shortly before or during clinical disease, these were significantly more active when delivered directly into the CNS, which probably involved an action on both CD28 ligands, CD80 and CD86. Although mouse CTLA4-human Ig was therapeutically less efficient than mouse CTLA4-mouse Ig protein, probably due to the enhanced immunogenicity and lower functional activity, gene delivery of CTLA4-human Ig into the CNS using a non-replicating adenoviral vector was more effective than a single injection of CTLA4-human Ig protein. Gene delivery significantly ameliorated the development of EAE, without necessarily inhibiting unrelated peripheral immune responsiveness. Local gene delivery of CTLA4-Ig may thus be an important target for immunotherapy of human autoimmune conditions such as multiple sclerosis.  相似文献   

7.
Susceptibility to multiple sclerosis (MS) is widely held to have a strong genetic component. While the identities of genes conferring susceptibility are currently unknown, possible candidates include those genes coding for proteins which function in central nervous system (CNS) myelin. Two such genes are the human myelin basic protein (MBP) and proteolipid protein (PLP) genes, whose products make up approximately 80% of the total protein in CNS myelin. The association of a variable number tandem repeat (VNTR) 5' to the human MBP gene with MS has been the subject of conflicting reports. Here we test the hypothesis that mutations in the human MBP and PLP genes might be associated with MS by examining the entire expressed sequence of both genes by single strand conformation polymorphism (SSCP) analysis, using a panel of 71 MS patients and 71 controls. We have also re-examined the VNTR region in patients and controls. Three base changes were found in the human PLP gene and nine base changes in the human MBP gene; these were essentially equally distributed between patients and controls. No preferential distribution of various alleles of the VNTR between patients and controls was found. Although intronic and regulatory regions have not been examined, it would appear unlikely that mutations in these genes coding for the two major CNS myelin proteins contribute significantly to genetic susceptibility to MS.  相似文献   

8.
The hydrophobic myelin proteolipid protein (PLP) contains covalently bound long-chain fatty acids which are attached to intracellular cysteine residues via thioester linkages. To gain insight into the role of acylation in the structure and function of myelin PLP, the amount and pattern of acyl groups attached to the protein during vertebrate evolution was determined. PLP isolated from brain myelin of amphibians, reptiles, birds and several mammals was subjected to alkaline methanolysis and the released methyl esters were analyzed by gas-liquid chromatography. In all species studied, PLP contained approximately the same amount of covalently bound fatty acids (3% w/w), and palmitic, palmitoleic, oleic and stearic acids were always the major acyl groups. Although the relative proportions of these fatty acids changed during evolution, the changes did not necessarily follow the variations in the acyl chain composition of the myelin free fatty acid pool, suggesting fatty acid specificity. The phylogenetic conservation of acylation suggests that this post-translational modification is critical for PLP function.  相似文献   

9.
The basic protein of central nervous system myelin has been shown to form complexes with acidic lipids in vitro. We measured the interaction of myelin basic protein with several charged and neutral lipids in a biphasic chloroform/methanol/water system and investigated the effect of decreasing the electrical charge of the basic amino groups of the myelin basic protein by acetylation. The modified myelin basic protein, which has an average of eight acetyl residues incorporated, was characterised by gel electrophoresis and circular dichroism. Complexes formed between the acetylated myelin basic protein and acidic lipids exhibited a reduction in the amount of lipids bound, a value that could be correlated with the number of modified amino groups. The significance of these experiments with reference to protein-lipid interaction in the myelin membrane is discussed.  相似文献   

10.
Phosphorylation is one of a number of post-translational modifications resulting in charge microheterogeneity of myelin basic protein (MBP). This phosphorylation is claimed to destabilise the compact myelin sheath by decreasing the interaction of membrane bilayers, thereby creating or maintaining pockets of cytoplasm. To further investigate and localise MBP phosphorylation to discrete regions of the myelin sheath we raised a monoclonal antibody with specificity for a known phosphorylation site in MBP. A synthetic peptide was made by Fmoc peptide chemistry and phosphorylation of Thr98 was achieved on the resin by the global phosphorylation methodology, utilising dibenzyl-N,N-diethylphosphoramidite phosphitylation and t-butylhydroperoxide oxidation. The peptide coupled to tuberculin was used to immunise mice for monoclonal antibody production. The selected hybridoma (Clone P12) secreted an IgG2a antibody which reacted strongly with the phosphorylated immunogen and with phosphorylated fractions of bovine MBP obtained by ion exchange chromatography. The antibody had minimal reactivity with the unphosphorylated peptide; the same peptide phosphorylated at another site Ser102; a preparation of unphosphorylated MBP obtained by ion exchange chromatography; and with an irrelevant phosphorylated protein (histone). Similar phosphorylation state-specific monoclonal antibodies could be made to recognise other specific phosphorylation sites in MBP or other proteins. It is planned to use these antibodies to quantify and locate the extent of MBP phosphorylation in normal and multiple sclerosis myelin.  相似文献   

11.
12.
We investigated T cell epitopes of guinea pig myelin basic protein (MBP) that induce experimental autoimmune encephalomyelitis (EAE) in DA rats, using synthetic peptides that correspond to regions of the guinea pig MBP molecule that are homologous to rat MBP. Four peptides were encephalitogenic when tested in DA rats. MBP63-81, which partially overlaps the dominant encephalitogenic MBP epitope for Lewis (LEW) rats, caused severe EAE in the DA strain but did not elicit EAE in LEW rats. MBP66-81 and MBP63-76 were also encephalitogenic for DA but not LEW rats. MBP79-99 also induced EAE in DA rats, although MBP87-99, the minor encephalitogenic LEW epitope, was inactive. This indicates that part of the 79-86 sequence is necessary for encephalitogenic activity in the DA strain. MBP101-120, and MBP142-167 were also encephalitogenic for DA rats. T cells from DA rats immunized with intact MBP proliferated in response to the whole protein and to MBP79-99, but were not stimulated to a significant extent by the other encephalitogenic peptides, suggesting that these may represent cryptic or subdominant epitopes. However, MBP63-81-specific T cell lines could be isolated by repeated restimulation with peptide, indicating that the peptide-specific T cells were present in DA rats at low frequency.  相似文献   

13.
We designed and expressed in bacteria a single-chain two-domain MHC class II molecule capable of binding and forming stable complexes with antigenic peptide. The prototype "beta1alpha1" molecule included the beta1 domain of the rat RT1.B class II molecule covalently linked to the amino terminus of the alpha1 domain. In association with the encephalitogenic myelin basic protein (MBP) 69-89 peptide recognized by Lewis rat T cells, the beta1alpha1/MBP-69-89 complex specifically labeled and inhibited activation of MBP-69-89 reactive T cells in an IL-2-reversible manner. Moreover, this complex both suppressed and treated clinical signs of experimental autoimmune encephalomyelitis and inhibited delayed-type hypersensitivity reactions and lymphocyte proliferation in an Ag-specific manner. These data indicate that the beta1alpha1/MBP-69-89 complex functions as a simplified natural TCR ligand with potent inhibitory activity that does not require additional signaling from the beta2 and alpha2 domains. This new class of small soluble polypeptide may provide a template for designing human homologues useful in detecting and regulating potentially autopathogenic T cells.  相似文献   

14.
Based on a possible pathological relationship of autoimmunity to autism, antibodies reactive with myelin basic protein (anti-MBP) were investigated in the sera of autistic children. Using a screening serum dilution of 1:400 in the protein-immunoblotting technique, approximately 58% (19 of 33) sera of autistic children (< or = 10 years of age) were found to be positive for anti-MBP. This result in autistics was significantly (p < or = .0001) different from the controls (8 of 88 or only 9% positive), which included age-matched children with normal health, idiopathic mental retardation (MR) and Down syndrome (DS), and normal adults of 20 to 40 years of age. Since autism is a syndrome of unknown etiology, it is possible that anti-MBP antibodies are associated with the development of autistic behavior.  相似文献   

15.
In strains of mice that are susceptible to experimental autoimmune encephalomyelitis (EAE), cloned CD4+ T cells reactive with autologous myelin basic protein (MBP) have been shown to cause disease when transferred to naive syngeneic recipients. Recent reports indicate that under particular experimental conditions, 'resistant' strains of mice can also develop EAE, although cloned cells have not been isolated and characterized. An analysis of the characteristics of a panel of MBP-specific T cells and the antigen presenting capability of CNS-derived cells obtained from the resistant strain BALB/c is presented here. The data demonstrate that immunization of EAE-resistant BALB/c mice results in the activation of a heterogeneous group of T cells reactive with autologous MBP. Both peripheral antigen presenting cells, as well as microglia isolated from brains of BALB/c mice, are capable of stimulating these cloned MBP-specific T cells to proliferate. When optimally activated in vitro and then injected in vivo into syngeneic BALB/c recipients, three clones studied induced severe cachexia, resulting in loss of up to 35% of body weight before death. Two of the clones also induced clinical and histological EAE, while the third induced only occasional histological evidence of disease. Differences in epitope recognition, T cell receptor usage, cytokine profiles or regulatory mechanisms of self tolerance, may play important roles in preventing potentially destructive autoimmune reactions by these T cells capable of recognizing autologous myelin in the central nervous system.  相似文献   

16.
The zinc-binding proteins (ZnBPs) in porcine brain were characterized by the radioactive zinc-blot technique. Three ZnBPs of molecular weights about 53 kDa, 42 kDa, and 21 kDa were identified. The 53 kDa and 42 kDa ZnBPs were found in all subcellular fractions while the 21 kDa ZnBP was mainly associated with particulate fractions. This 21 kDa ZnBP was identified by internal protein sequence data as the myelin basic protein. Further characterization of its electrophoretic properties and cyanogen bromide cleavage pattern with the authentic protein confirmed its identity. The zinc binding properties of myelin basic protein are metal specific, concentration dependent and pH dependent. The zinc binding property is conferred by the histidine residues since modification of these residues by diethyl-pyrocarbonate would abolish this activity. Furthermore, zinc ion was found to potentiate myelin basic protein-induced phospholipid vesicle aggregation. It is likely that zinc plays an important role in myelin compaction by interacting with myelin basic protein.  相似文献   

17.
18.
Myelin basic protein (MBP) mRNA is localized to the myelin membranes of oligodendrocytes. When exogenous MBP mRNA is microinjected into oligodendrocytes in culture, it is transported along the processes and localized to the myelin compartment in a multistep intracellular RNA trafficking pathway. In the work described here, oligodendrocytes were treated with agents that affect the cytoskeleton including: nocodazole, to disrupt microtubules; taxol, to stabilize microtubules; cytochalasin, to disrupt microfilaments; and kinesin anti-sense oligonucleotide, to suppress kinesin expression. Digoxigenin-labeled MBP mRNA was microinjected into the treated cells and the extent of translocation of the microinjected RNA was determined by confocal microscopy. Nocodazole, taxol, and kinesin anti-sense oligonucleotide inhibited translocation of microinjected MBP mRNA, while cytochalasin B and kinesin sense oligonucleotide did not. These results indicate that translocation of MBP mRNA in oligodendrocytes requires intact microtubules and kinesin but does not require intact microfilaments. The results are discussed in relation to the current multistep model for intracellular RNA trafficking in oligodendrocytes.  相似文献   

19.
Emerging data suggest that polymorphonuclear leukocytes (PMNLs) can play an important role in Ag-dependent immune responses. Therefore, we have assessed the involvement of these cells in the development of an organ-specific autoimmune disease, experimental autoimmune encephalomyelitis (EAE), in the mouse. Depletion of peripheral blood PMNLs beginning day 8 after immunization significantly delayed and in some cases totally prevented the development of clinical EAE in mice. Depletion of PMNLs beginning 1 day before sensitization and continuing until day 7 postimmunization had no effect on the subsequent development of EAE, suggesting that depletion alters the efferent but not the afferent arm of the immune response. In vitro studies showed that lymphoid cells from mice protected from EAE by PMNL depletion beginning on day 8 postsensitization proliferated in response to specific Ag to a level equal to cells from sensitized animals treated with control serum, again indicating that treatment was not affecting the afferent limb of the immune response. Further evidence that PMNL may be necessary in initiating the pathology of EAE was seen in passive transfer experiments where PMNL-depleted recipients of MBP-specific lymphoid effector cells developed EAE much less effectively than did animals treated with control Ab. Taken together, these data indicate that PMNLs play a critical role in the effector phase of the development of the clinicopathologic expression of EAE in mice.  相似文献   

20.
Glial cells produce myelin and contribute to axonal morphology in the nervous system. Two myelin membrane proteolipids, PLP and DM20, were shown to be essential for the integrity of myelinated axons. In the absence of PLP-DM20, mice assembled compact myelin sheaths but subsequently developed widespread axonal swellings and degeneration, associated predominantly with small-caliber nerve fibers. Similar swellings were absent in dysmyelinated shiverer mice, which lack myelin basic protein (MBP), but recurred in MBP*PLP double mutants. Thus, fiber degeneration, which was probably secondary to impaired axonal transport, could indicate that myelinated axons require local oligodendroglial support.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号