首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND:. Integrins induce the formation of large complexes of cytoskeletal and signaling proteins, which regulate many intracellular processes. The activation and assembly of signaling complexes involving focal adhesion kinase (FAK) occurs late in integrin signaling, downstream from actin polymerization. Our previous studies indicated that integrin-mediated activation of the non-receptor tyrosine kinase Syk in hematopoietic cells is independent of FAK and actin polymerization, and suggested the existence of a distinct signaling pathway regulated by Syk. RESULTS:. Multiple proteins were found to be activated by Syk, downstream of engagement of the platelet/megakaryocyte-specific integrin alphaIIbbeta3. The guanine nucleotide exchange factor Vav1 was inducibly phosphorylated in a Syk-dependent manner in cells following their attachment to fibrinogen. Together, Syk and Vav1 triggered lamellipodia formation in fibrinogen-adherent cells and both Syk and Vav1 colocalized with alphaIIbbeta3 in lamellipodia but not in focal adhesions. Additionally, Syk and Vav1 cooperatively induced activation of Jun N-terminal kinase (JNK), extracellular-signal-regulated kinase 2 (ERK2) and the kinase Akt, and phosphorylation of the oncoprotein Cbl in fibrinogen-adherent cells. Activation of all of these proteins by Syk and Vav1 was not dependent on actin polymerization. CONCLUSIONS:. Syk and Vav1 regulate a unique integrin signaling pathway that differs from the FAK pathway in its proximity to the integrin itself, its localization to lamellipodia, and its activation, which is independent of actin polymerization. This pathway may regulate multiple downstream events in hematopoietic cells, including Rac-induced lamellipodia formation, tyrosine phosphorylation of Cbl, and activation of JNK, ERK2 and the phosphatidylinositol 3'-kinase-regulated kinase Akt.  相似文献   

2.
Integrin alphaIIbbeta3 functions as the fibrinogen receptor on platelets and mediates platelet aggregation and clot retraction. Among the events that occur during either "inside-out" or "outside-in" signaling through alphaIIbbeta3 is the phosphorylation of focal adhesion kinase (pp125(FAK)) and the association of pp125(FAK) with cytoskeletal components. To examine the role of pp125(FAK) in these integrin-mediated events, pp125(FAK) phosphorylation and association with the cytoskeleton was determined in cells expressing two mutant forms of alphaIIbbeta3: alphaIIbbeta3(D723A/E726A), a constitutively active integrin in which the putative binding site for pp125(FAK) is altered, and alphaIIbbeta3(F727A/K729E/F730A), in which the putative binding site for alpha-actinin is altered. Both mutants were expressed on the cell surface and were able to bind ligand, either spontaneously or upon activation. Whereas cells expressing alphaIIbbeta3(D723A/E726A) were able to form focal adhesions and stress fibers upon adherence to fibrinogen, cells expressing alphaIIbbeta3(F727A/K729E/F730A) adhere to fibrinogen, but had reduced focal adhesions and stress fibers. pp125(FAK) is recruited to focal adhesions in adherent cells expressing alphaIIbbeta3(D723A/E726A) and is phosphorylated in adherent cells or in cells in suspension in the presence of fibrinogen. In adherent cells expressing alphaIIbbeta3(F727A/K729E/F730A), pp125(FAK) was phosphorylated despite reduced formation of focal adhesions and stress fibers. We conclude that activation of pp125(FAK) can be dissociated from two important events in integrin signaling, the assembly of focal adhesions in adherent cells and integrin activation following ligand occupation.  相似文献   

3.
A panel of antibodies to the alphaIIbbeta3 integrin was used to promote adhesion of Chinese hamster ovary cells transfected with the alphaIIbbeta3 fibrinogen receptor. While some alphaIIbbeta3 antibodies were not able to induce p125 focal adhesion kinase (p125FAK) tyrosine phosphorylation, all the antibodies equally support cell adhesion but not spreading and assembly of actin stress fibers. Absence of stress fibers was also obtained by plating on antibodies directed to the hamster beta1 integrin. In contrast, cells plated on matrix proteins spread organizing actin stress fibers. Treatment with phorbol esters phorbol 12-myristate 13-acetate (PMA) induced cells to spread on antibodies-coated dishes but not to organize actin in stress fibers. The combination of PMA and cytotoxic necrotizing factor 1 (CNF1), a specific Rho activator, induced cell spreading and organization of stress fibers. PMA or the combination of PMA and CNF1 also increases tyrosine phosphorylation of p125FAK in response to antibodies that were otherwise unable to trigger this response. These data show that: 1) matrix proteins and antibodies differ in their ability to induce integrin-dependent actin cytoskeleton organization (while matrix induced stress fibers formation, antibodies did not); 2) p125FAK tyrosine phosphorylation is insufficient per se to trigger actin stress fibers formation since antibodies that activate p125FAK tyrosine phosphorylation did not lead to actin stress fibers assembly; and 3) the inability of anti-integrin antibodies to trigger stress fibers organization is overcome by concomitant activation of the protein kinase C (PKC) and Rho pathways; PKC activation leads to cell spreading and Rho activation is required to organize actin stress fibers.  相似文献   

4.
pp72syk is essential for development and function of several hematopoietic cells, and it becomes activated through tandem SH2 interaction with ITAM motifs in immune response receptors. Since Syk is also activated through integrins, which do not contain ITAMs, a CHO cell model system was used to study Syk activation by the platelet integrin, alpha IIb beta 3. As in platelets, Syk underwent tyrosine phosphorylation and activation during CHO cell adhesion to alpha IIb beta 3 ligands, including fibrinogen. This involved Syk autophosphorylation and the tyrosine kinase activity of Src, and it exhibited two novel features. Firstly, unlike alpha IIb beta 3-mediated activation of pp125FAK, Syk activation could be triggered by the binding of soluble fibrinogen and abolished by truncation of the alpha IIb or beta 3 cytoplasmic tail, and it was resistant to inhibition by cytochalasin D. Secondly, it did not require phosphorylated ITAMs since it was unaffected by disruption of an ITAM-interaction motif in the SH2(C) domain of Syk or by simultaneous overexpression of the tandem SH2 domains. These studies demonstrate that Syk is a proximal component in alpha IIb beta 3 signaling and is regulated as a consequence of intimate functional relationships with the alpha IIb beta 3 cytoplasmic tails and with Src or a closely related kinase. Furthermore, there are fundamental differences in the activation of Syk by alpha IIb beta 3 and immune response receptors, suggesting a unique role for integrins in Syk function.  相似文献   

5.
Integrin alphaIIb beta3 mediates platelet aggregation and "outside-in" signaling. It is regulated by changes in receptor conformation and affinity and/or by lateral diffusion and receptor clustering. To document the relative contributions of conformation and clustering to alphaIIb beta3 function, alphaIIb was fused at its cytoplasmic tail to one or two FKBP12 repeats (FKBP). These modified alphaIIb subunits were expressed with beta3 in CHO cells, and the heterodimers could be clustered into morphologically detectable oligomers upon addition of AP1510, a membrane-permeable, bivalent FKBP ligand. Integrin clustering by AP1510 caused binding of fibrinogen and a multivalent (but not monovalent) fibrinogen-mimetic antibody. However, ligand binding due to clustering was only 25-50% of that observed when alphaIIb beta3 affinity was increased by an activating antibody or an activating mutation. The effects of integrin clustering and affinity modulation were additive, and clustering promoted irreversible ligand binding. Clustering of alphaIIb beta3 also promoted cell adhesion to fibrinogen or von Willebrand factor, but not as effectively as affinity modulation. However, clustering was sufficient to trigger fibrinogen-independent tyrosine phosphorylation of pp72(Syk) and fibrinogen-dependent phosphorylation of pp125(FAK), even in non-adherent cells. Thus, receptor clustering and affinity modulation play complementary roles in alphaIIb beta3 function. Affinity modulation is the predominant regulator of ligand binding and cell adhesion, but clustering increases these responses further and triggers protein tyrosine phosphorylation, even in the absence of affinity modulation. Both affinity modulation and clustering may be needed for optimal function of alphaIIb beta3 in platelets.  相似文献   

6.
The beta 1 subfamily of integrins is thought to play an important role in both the adhesion/migration and proliferation/differentiation of T cells. beta 1 integrins can provide T cell costimulation through interaction of very late antigen (VLA) 4 (VLA-4) (alpha 4 beta 1) and VLA-5 (alpha 5 beta 1) with the extracellular matrix protein fibronectin (FN), or by VLA-4 binding to its cell surface ligand, vascular cell adhesion molecule (VCAM) 1. The mechanism by which beta 1 integrin members transduce T cell-costimulatory signals is poorly understood. Studies in non-T cells have demonstrated regulation of the tyrosine focal adhesion kinase pp125FAK by beta 1 integrin engagement and, most recently, indicate a role for pp125FAK in linking integrin-mediated signal transduction to the Ras pathway (Schaller, M. D., and J. T. Parsons, 1994, Curr. Opin. Cell. Biol. 6: 705-710; Schlaepfer, D. D., S. K. Hanks, T. Hunter, and P. Van der Geer. 1994. Nature (Lond.), 372:786-790). Although pp125FAK kinase occurs in T cells, there are no reports on its regulation in this cell type. The studies described in this article characterize novel regulation of pp125FAK by the T cell receptor (TCR)-CD3 antigen complex and beta 1 integrins, and provide the first account, in any cell type, of integrin alpha 4 beta 1-mediated pp125FAK tyrosine phosphorylation. We demonstrate a rapid and sustained synergistic increase in tyrosine phosphorylation of human pp125FAK in Jurkat T cells after simultaneous (a) triggering of the TCR-CD3 complex, and (b) alpha 4 beta 1 and alpha 5 beta 1 integrin-mediated binding of these cells to immobilized FN or alpha 4 beta 1 integrin-mediated binding to immobilized VCAM-1. Studies with normal peripheral blood-derived CD4+ human T blasts confirm the synergistic action of a TCR-CD3 complex-mediated costimulus with a FN- or VCAM-1-dependent signal in the induction of T cell pp125FAK tyrosine phosphorylation. In vitro kinase assays performed on pp125FAK immunoprecipitates isolated from Jurkat cells and normal CD4+ T cells identified a coprecipitating 57-kD tyrosine-phosphorylated protein (pp57), distinct from pp59fyn or pp56lck. These results indicate, for the first time, the involvement of a specific kinase, pp125FAK, in alpha 4 beta 1- and alpha 5 beta 1-mediated T cell-costimulatory signaling pathways. In addition, the data demonstrate novel regulation of pp125FAK tyrosine phosphorylation by the TCR-CD3 complex.  相似文献   

7.
We have investigated the structural requirements of the beta3 integrin subunit cytoplasmic domain necessary for tyrosine phosphorylation of focal adhesion kinase (FAK) and paxillin during alphav beta3-mediated cell spreading. Using CHO cells transfected with various beta3 mutants, we demonstrate a close correlation between alphav beta3-mediated cell spreading and tyrosine phosphorylation of FAK and paxillin, and highlight a distinct involvement of the NPLY747 and NITY759 motifs in these signaling processes. Deletion of the NITY759 motif alone was sufficient to completely prevent alphav beta3-dependent focal contact formation, cell spreading, and FAK/paxillin phosphorylation. The single Y759A substitution induced a strong inhibitory phenotype, while the more conservative, but still phosphorylation-defective, Y759F mutation restored wild type receptor function. Alanine substitution of the highly conserved Tyr747 completely abolished alphav beta3-dependent formation of focal adhesion plaques, cell spreading, and FAK/paxillin phosphorylation, whereas a Y747F substitution only partially restored these events. As none of these mutations affected receptor-ligand interaction, our results suggest that the structural integrity of the NITY759 motif, rather than the phosphorylation status of Tyr759 is important for beta3-mediated cytoskeleton reorganization and tyrosine phosphorylation of FAK and paxillin, while the presence of Tyr at residue 747 within the NPLY747 motif is required for optimal beta3 post-ligand binding events.  相似文献   

8.
Binding of substrate-bound extracellular matrix proteins to cell surface integrins results in a variety of cellular responses including adhesion, cytoskeletal reorganization, and gene expression. We have previously shown that addition of soluble SC5b-9, the complement-vitronectin complex, resulted in an RGD-dependent increase in lung venular hydraulic conductivity (Ishikawa, S., Tsukada, H., and Bhattacharya, J. (1993) J. Clin. Invest. 91, 103-109). To identify specific integrin(s) and signal transduction pathways that are responsive to soluble vitronectin-containing ligands, we exposed confluent bovine pulmonary artery cells to purified soluble human mono- or multimeric vitronectin, or SC5b-9, and determined the extent of endothelial cell protein tyrosine phosphorylation. Monomeric vitronectin (Vn) did not induce enhanced protein tyrosine phosphorylation. However, multimeric Vn and SC5b-9 elicited time- and concentration-dependent increases in tyrosine phosphorylation of numerous proteins. Antiserum against vitronectin, RGD peptides, and monoclonal and polyclonal antibodies against the alpha v beta 3 integrin blocked the vitronectin- or SC5b-9-induced enhanced accumulation of tyrosine phosphoproteins, while antibodies against beta 1 integrins and the alpha v beta 5 integrin did not. Clustering of the alpha v beta 3 integrin using monoclonal antibody LM609 caused a pattern of enhanced tyrosine phosphorylation similar to that caused by multimeric Vn and SC5b-9, suggesting that aggregation of alpha v beta 3 was critical for signaling. Among the proteins that underwent enhanced tyrosine phosphorylation in response to vitronectin were the cytoskeletal proteins paxillin, cortactin, and ezrin, as well as the SH2 domain-containing protein Shc, and p125FAK. We conclude that ligation of the alpha v beta 3 integrin by soluble ligands promotes enhanced phosphorylation of several proteins implicated in tyrosine kinase signaling and suggest that this pathway may be important in inflammatory states which are accompanied by accumulation of SC5b-9.  相似文献   

9.
Activation of the focal adhesion kinase pp125FAK correlates with its phosphorylation on tyrosine residues and is mediated by multiple receptor-ligand pairs. In platelets, pp125FAK phosphorylation is triggered by alpha IIb beta 3 integrin or Fc gamma RII receptor interaction with immobilized fibrinogen and IgG, respectively. In this study we used platelets as a model system to explore the role of PI 3-kinase relative to pp125FAK phosphorylation. Treatment of the platelets with two PI 3-kinase inhibitors, wortmannin and LY294002, inhibited in a dose-dependent manner alpha IIb beta 3-mediated platelet spreading on fibrinogen having no effect on platelet spreading on IgG. Both inhibitors also completely abolished alpha IIb beta 3-mediated pp125FAK phosphorylation but not pp72syk phosphorylation. Furthermore, Fc gamma RII- and thrombin-induced pp125FAK phosphorylation were not affected by wortmannin and LY294002. Finally, the PI 3-kinase inhibitors' effect on alpha IIb beta 3-mediated spreading and pp125FAK phosphorylation was reversed by phorbol ester treatment. These results establish that the role of PI 3-kinase relative to pp125FAK phosphorylation in platelets is receptor type-specific yet essential for alpha IIb beta 3-mediated cell spreading and pp125FAK phosphorylation.  相似文献   

10.
Integrin-mediated cell adhesion causes activation of MAP kinases and increased tyrosine phosphorylation of focal adhesion kinase (FAK). Autophosphorylation of FAK leads to the binding of SH2-domain proteins including Src-family kinases and the Grb2-Sos complex. Since Grb2-Sos is a key regulator of the Ras signal transduction pathway, one plausible hypothesis has been that integrin-mediated tyrosine phosphorylation of FAK leads to activation of the Ras cascade and ultimately to mitogen activated protein (MAP) kinase activation. Thus, in this scenario FAK would serve as an upstream regulator of MAP kinase activity. However, in this report we present several lines of evidence showing that integrin-mediated MAP kinase activity in fibroblasts is independent of FAK. First, a beta1 integrin subunit deletion mutant affecting the putative FAK binding site supports activation of MAP kinase in adhering fibroblasts but not tyrosine phosphorylation of FAK. Second, fibroblast adhesion to bacterially expressed fragments of fibronectin demonstrates that robust activation of MAP kinase can precede tyrosine phosphorylation of FAK. Finally, we have used FRNK, the noncatalytic COOH-terminal domain of FAK, as a dominant negative inhibitor of FAK autophosphorylation and of tyrosine phosphorylation of focal contacts. Using retroviral infection, we demonstrate that levels of FRNK expression sufficient to completely block FAK tyrosine phosphorylation were without effect on integrin-mediated activation of MAP kinase. These results strongly suggest that integrin-mediated activation of MAP kinase is independent of FAK and indicate the probable existence of at least two distinct integrin signaling pathways in fibroblasts.  相似文献   

11.
Focal adhesion kinase, pp125FAK, is a nonmyristylated cytosolic tyrosine kinase unrelated to protein-tyrosine kinase families categorized to date. The kinase activity and tyrosine phosphorylation of pp125FAK are induced by beta 1 and beta 3 integrin-mediated cell adherence or aggregation. pp125FAK is also a tyrosine phosphorylation substrate in v-src-transformed cells and is localized to focal adhesion contracts of adherent fibroblasts and carcinoma cells. In this report, we have transiently expressed in COS cells a transmembrane-anchored chimeric receptor kinase, CD2FAK, consisting of CD2 and pp125FAK. We analyzed its kinase activity and tyrosine phosphorylation and compared to those of pp125FAK. We found that CD2FAK exhibited constitutive kinase activity and a high basal tyrosine phosphorylation level when COS transfectants were suspended in serum-free media. The kinase activity of CD2FAK was similarly up-regulated upon beta 1 integrin-mediated cell adherence as the endogenous pp125FAK. Both CD2FAK and pp125FAK appeared to be active as autophosphorylating kinases as shown by mutation of the ATP binding site. We determined the major tyrosine phosphorylation site, Tyr397, identical for both the constitutively activated CD2FAK and pp125FAK in response to beta 1 integrin-mediated cell adherence by site-directed mutagenesis. Deletions of the NH2- or the COOH-terminal noncatalytic domain of FAK, including Tyr397 did not lead to abolition of the kinase activity of pp125FAK or CD2FAK. Taken together, CD2FAK exhibits properties of an activated pp125FAK and the kinase activity does not appear to require tyrosine phosphorylation in vitro or in vivo.  相似文献   

12.
Beta1 integrins can provide T cell co-stimulation, but little is known concerning their downstream signaling pathways. We found that Pyk2, a focal adhesion kinase-related tyrosine kinase, is regulated by beta1 integrin signaling in human T cells. Stimulation of Jurkat T cells with the alpha4beta1 integrin ligand VCAM-1 results in Pyk2 tyrosine phosphorylation, and combined stimulation with VCAM-1 and anti-CD3 mAb induces rapid and sustained synergistic Pyk2 phosphorylation. Studies with mAb suggest that in synergistic CD3- and alpha4beta1 integrin-mediated Pyk2 tyrosine phosphorylation, a major contribution of CD3-derived signals is independent of their effects on regulating integrin adhesion. Analysis of resting human CD4+ T cells confirmed the ability of CD3-derived signals to synergize with beta1 integrin-dependent signals in the induction of Pyk2 tyrosine phosphorylation. In addition, although CD28-mediated co-stimulatory signals were able to synergize with CD3-mediated signals in inducing ERK and JNK activation and secretion of IL-2 in the primary T cells, they did not contribute to the induction of Pyk2 phosphorylation. Taken together, these results indicate a potential role for Pyk2 in T cell co-stimulation mediated specifically by beta1 integrins.  相似文献   

13.
Tyrosine phosphorylation of multiple platelet proteins is stimulated by thrombin and other agonists that cause platelet aggregation and secretion. The phosphorylation of a subset of these proteins, including a protein tyrosine kinase, pp125FAK, is dependent on the platelet aggregation that follows fibrinogen binding to integrin alpha IIb beta 3. In this report, we examined whether fibrinogen binding, per se, triggers a process of tyrosine phosphorylation in the absence of exogenous agonists. Binding of soluble fibrinogen was induced with Fab fragments of an anti-beta 3 antibody (anti-LIBS6) that directly exposes the fibrinogen binding site in alpha IIb beta3. Proteins of 50-68 KD and 140 kD became phosphorylated on tyrosine residues in a fibrinogen-dependent manner. This response did not require prostaglandin synthesis, an increase in cytosolic free calcium, platelet aggregation or granule secretion, nor was it associated with tyrosine phosphorylation of pp125FAK. Tyrosine phosphorylation of the 50-68-kD and 140-kD proteins was also observed when (a) fibrinogen binding was stimulated by agonists such as epinephrine, ADP, or thrombin instead of by anti-LIBS6; (b) fragment X, a dimeric plasmin-derived fragment of fibrinogen was used instead of fibrinogen; or (c) alpha IIb beta 3 complexes were cross-linked by antibodies, even in the absence of fibrinogen. In contrast, no tyrosine phosphorylation was observed when the ligand consisted of monomeric cell recognition peptides derived from fibrinogen (RGDS or gamma 400-411). Fibrinogen-dependent tyrosine phosphorylation was inhibited by cytochalasin D. These studies demonstrate that fibrinogen binding to alpha IIb beta 3 initiates a process of tyrosine phosphorylation that precedes platelet aggregation and the phosphorylation of pp125FAK. This reaction may depend on the oligomerization of integrin receptors and on the state of actin polymerization, organizational processes that may juxtapose tyrosine kinases with their substrates.  相似文献   

14.
We examined alterations in cell morphology and expression of adhesion molecules in response to a general protein kinase inhibitor K252a treatment of non-adherent colon adenocarcinoma Colo201 cells. K252a induced rapid cell adhesion and spreading with concomitant formation of actin stress fibers. A protein kinase A inhibitor KT5720 also induced cell adhesion, but the rate of spread was slower than that seen with K252a. These adhesions were mediated by integrin molecules since cell adhesion required Mg2+, Mn2+ or Ca2+, and was inhibited by monoclonal antibodies for integrins alpha2 and beta1. Indirect immunofluorescence microscopic observations revealed that integrin alpha2 and beta1 molecules in K252a-treated cells were concentrated at sites of focal adhesion, but expressions of integrin molecules were not modulated. Tyrosine phosphorylation of focal adhesion kinase (FAK) and paxillin increased during K252a- or KT5720-induced cell adhesion. Immunosuppressants FK506 and cyclosporin A suppressed the K252a-induced cell adhesion and abolished tyrosine phosphorylation of cellular proteins including FAK and paxillin. Furthermore, W7 and calmidazolium, inhibitors of calmodulin, also inhibited the cell adhesion. Based on findings that FK506 and cyclosporin A are inhibitors of the calcium calmodulin-dependent protein phosphatase, calcineurin, this phosphatase may regulate integrin-dependent cell adhesion and spread of Colo201 cells. This Colo201 cell model provides a pertinent system for studying molecules involved in signal transduction pathways and can shed light on mechanisms of metastasis and invasion of colon carcinoma cells.  相似文献   

15.
Integrin/ligand binding evokes tyrosine phosphorylation of various proteins. We reported previously that a 105 kD protein (pp105) was tyrosine phosphorylated by the engagement of beta 1 integrins in T lymphocytes. We show here that pp105 is a novel p130Cas (Crk-associated substrate)-related protein. Deduced amino acid sequence revealed that pp105 contains conserved motifs with p130Cas, and both pp105 and p130Cas bind to focal adhesion kinase (pp125FAK) and Crk. However, pp105 has a clearly distinct structure from p130Cas, and pp105 is preferentially expressed in lymphocytes, whereas p130Cas is expressed in adherent cells. With these findings, we designate pp105 as Cas-L, lymphocyte-type Cas. Furthermore, we demonstrate that integrin/ligand binding results in the recruitment of Crk, Nck, and SHPTP2 to pp105. These findings further define the roles of pp105/Cas-L and pp125FAK in the integrin-mediated signaling pathways.  相似文献   

16.
B lymphocytes express several members of the integrin family of adhesion molecules that mediate cell-cell and cell-extracellular matrix interactions. In addition to beta1 integrins, predominantly alpha4 beta1, mature B cells also express alpha4 beta7, which is a receptor for vascular cell adhesion molecule-1 and fibronectin, and is also involved in the homing of B cells to mucosal sites through binding to a third ligand, mucosal address in cell adhesion molecule-1. Here we describe that crosslinking of alpha4 beta7 integrins on B cell lines and normal tonsillar B cells, induces tyrosine phosphorylation of multiple substrates of 105-130 kD, indicating that beta7 integrin plays a role as signaling molecule in B cells. This pattern of phosphorylated proteins was very similar to that induced following ligation of alpha4 beta1. Interestingly, ligation of alpha5 beta1 or alpha6 beta1 also stimulated the 105-125 kD group of phosphorylated proteins, whereas ligation of beta2 integrins did not. The focal adhesion tyrosine kinase p125FAK was identified as one of these substrates. Beta1 or beta7 mediated tyrosine phosphorylations were markedly decreased when the microfilament assembly was inhibited by cytochalasin B. These results suggest that intracellular signals initiated by different integrins in B cells may converge, to similar cytoskeleton-dependent tyrosine phosphorylated proteins.  相似文献   

17.
Interaction of type I collagen (COL(I)) with alpha2beta1 integrin causes differentiation and transforming growth factor (TGF)-beta receptor down-regulation in osteoblastic cells (Takeuchi, Y., Nakayama, K., and Matsumoto, T. (1996) J. Biol. Chem. 271, 3938-3644). The TGF-beta receptor down-regulation enables cells to escape from the inhibition of differentiation by TGF-beta. To clarify how the cell-matrix interaction regulates these phenotypic changes, signaling pathways were examined in murine MC3T3-E1 cells. Attachment of cells to COL(I) stimulated tyrosine phosphorylation of focal adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK), a mitogen-activated protein kinase (MAPK), and enhanced MAPK activity. Inhibition of tyrosine kinase by herbimycin A, destruction of focal adhesion by cytochalasin D, or overexpression of antisense FAK mRNA prevented the activation of ERK/MAPK and the increase in alkaline phosphatase (ALP) activity. Transient expression of a MAPK-specific phosphatase, CL100, also suppressed the elevation of ALP activity. In addition, introduction of a constitutively active MAPK kinase enhanced ALP activity in the absence of collagen production. TGF-beta receptor down-regulation was abrogated by treatments that inactivate FAK, whereas the expression of CL100 had no effect. These results demonstrate that COL(I)-alpha2beta1 integrin interaction facilitates differentiation and down-regulates TGF-beta receptors via the activation of FAK and its diverse downstream signals. These signaling pathways may play an important role in the sequential differentiation of osteoblasts during bone formation.  相似文献   

18.
Reactive oxygen species play an important role at the site of vascular injuries and arterial thromboses. We studied the mechanism mediating platelet aggregation induced by H2O2, a major cellular oxidant. Exposure to H2O2 triggered platelet aggregation, but only when the platelets were stirred. Strong platelet aggregation induced99032416 required the presence of the tyrosine phosphatase inhibitor sodium orthovanadate (NaVO4) and was dependent on the participation of integrin alphaIIbbeta3 (glycoprotein IIb-IIIa). A specific inhibitor of alphaIIbbeta3 blocked platelet aggregation induced by H2O2 and NaVO4, thus confirming that aggregation requires this receptor. In the presence of H2O2 and NaVO4, multiple platelet substrates were phosphorylated on tyrosine. Such tyrosine kinase response was necessary but not sufficient to activate alphaIIbbeta3, as detected by binding of soluble fibrinogen to platelets. Stirring of the platelets exposed to H2O2 and NaVO4 was also needed to allow for binding of fibrinogen to alphaIIbbeta3. The tyrosine kinase inhibitor genistein was able to block platelet aggregation induced by H2O2 and NaVO4, thus confirming that tyrosine kinase activity was needed to trigger alphaIIbbeta3 activation on stirring. N-Acetyl-L-cysteine, a cell-permeant antioxidant, blocked the tyrosine phosphorylation of platelet substrates and also the platelet aggregation induced by H2O2 and NaVO4. We found that beta3 was phosphorylated on tyrosine in platelets exposed to H2O2 and NaVO4, even in the absence of aggregation. Hence, tyrosine phosphorylation of beta3 might contribute to the "priming" of alphaIIbbeta3 induced by H2O2 and NaVO4, whereby the receptor can become activated on stirring of the platelets.  相似文献   

19.
Many important matrix proteins involved in bone remodeling contain separate domains that orient the protein on hydroxyapatite and interact with target cell receptors, respectively. We have designed two synthetic peptides that mimic the dual activities of these large, complex proteins by binding to calcium phosphate minerals and by engaging integrin-dependent signaling pathways in osteoblasts. The addition of either PGRGDS from osteopontin or PDGEA from collagen type I to the HAP-binding domain of statherin (N15 domain) did not alter its alpha-helical structure or diminish its affinity for hydroxyapatite. Immobilized N15-PGRGDS bound MC3T3-E1 osteoblasts predominantly via the alpha v beta 3 integrin and induced focal adhesion kinase (FAK) phosphorylation at comparable levels to immobilized osteopontin. Immobilized N15-PDGEA bound MC3T3-E1 osteoblasts predominantly through the alpha 2 beta 1 integrin and induced similar levels of FAK phosphorylation. Although both peptides induced FAK phosphorylation with similar time courses, only the N15-PDGEA peptide induced ERK1/2 phosphorylation, showing that these peptides are also capable of engaging integrin-specific signaling pathways. This peptide system can be used to study adhesion-dependent control of signaling in the context of the relevant biomineral surface and may also be useful in biomaterial and tissue engineering applications.  相似文献   

20.
BACKGROUND/AIMS: Activation of hepatic stellate cells plays a key role in liver fibrogenesis. Disruption of normal hepatic stellate cell-matrix interactions may contribute to this process. However, little is known about the molecular events leading from integrin-extracellular matrix interaction to hepatic stellate cell function. Therefore, we investigated the role of integrin signaling in tyrosine phosphorylation of focal adhesion kinase and cytoskeletal assembly in rat hepatic stellate cells using soluble Arg-Gly-Asp containing peptides. METHODS: Hepatic stellate cells were isolated from normal rat livers. Integrin alpha5beta1 expression in hepatic stellate cells was analyzed by immunoprecipitation and immunocytochemistry. The cytoskeletal assembly and tyrosine phosphorylation of focal adhesion kinase were determined by immunocytochemistry and immunoblotting. We also analyzed the effect of Arg-Gly-Asp containing peptides on the expression of smooth muscle alpha actin by immunocytochemistry and immunoblotting. RESULTS: We identified integrin alpha5beta1 in rat hepatic stellate cells. Stress fiber formation and cell shape were different when hepatic stellate cells were plated on various extracellular matrix components. Treatment of hepatic stellate cells with soluble Arg-Gly-Asp peptides diminished the adhesion-induced tyrosine phosphorylation of focal adhesion kinase and inhibited the formation of stress fibers. The peptides also reduced the expression of smooth muscle alpha actin. CONCLUSIONS: Our results demonstrate that adhesion to extracellular matrix induces tyrosine phosphorylation of focal adhesion kinase and promotes actin stress fiber formation and focal adhesion assembly in rat hepatic stellate cells, and that these events are disturbed by soluble Arg-Gly-Asp peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号