首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The preferential utilization of different electron donors and their effects on the nitrate reduction and methanogenesis in a mixed, mesophilic (35 degrees C) methanogenic culture were investigated. Batch methanogenic cultures were fed with dextrin/peptone (D/P), propionate, acetate, and H(2)/CO(2) at an initial COD of 500 mg/L and an initial nitrate concentration of 50 mg N/L. Immediate cessation of methane production was observed in all nitrate-amended cultures. Methane production completely recovered in the D/P- and acetate-fed cultures, and partially recovered or did not recover in the propionate- and H(2)/CO(2)-fed, nitrate-amended cultures, respectively. Accumulation of denitrification intermediates was observed in both the propionate- and H(2)/CO(2)-fed cultures, which resulted in inhibition of fermentation and/or methanogenesis. The fastest and the slowest nitrate reduction were observed in the acetate- and propionate-fed cultures, respectively.  相似文献   

2.
Nitrate reduction processes were incorporated into the IWA Anaerobic Digestion Model No. 1 (ADM1) in order to account for the effect of such processes on fermentation and methanogenesis. The general structure of the ADM1 was not changed except for modifications related to disintegration and hydrolysis of complex organic matter and decayed biomass. A fraction of butyrate/valerate and propionate degraders was assumed to be the fermentative denitrifiers carrying out fermentation in the absence of N-oxides. Nitrate reduction proceeded in a stepwise manner to nitrite, nitric oxide, nitrous oxide and nitrogen gas using four substrates as electron and/or carbon source. The utilization of the four substrates and N-oxides was based on stoichiometry and kinetics. The inhibitory effect of N-oxides on the methanogens was accounted for by the use of non-competitive inhibition functions. Model simulations were compared with experimental data obtained with a batch, mixed fermenting and methanogenic culture amended with various initial nitrate concentrations.  相似文献   

3.
Simultaneous nitrification and denitrification (SND) via the nitrite pathway and anaerobic-anoxic enhanced biological phosphorus removal (EBPR) are two processes that can significantly reduce the COD demand for nitrogen and phosphorus removal. The combination of these two processes has the potential of achieving simultaneous nitrogen and phosphorus removal with a minimal requirement for COD. A lab-scale sequencing batch reactor (SBR) was operated in alternating anaerobic-aerobic mode with a low dissolved oxygen concentration (DO, 0.5 mg/L) during the aerobic period, and was demonstrated to accomplish nitrification, denitrification and phosphorus removal. Under anaerobic conditions, COD was taken up and converted to polyhydroxyalkanoates (PHA), accompanied with phosphorus release. In the subsequent aerobic stage, PHA was oxidized and phosphorus was taken up to less than 0.5 mg/L at the end of the cycle. Ammonia was also oxidised during the aerobic period, but without accumulation of nitrite or nitrate in the system, indicating the occurrence of simultaneous nitrification and denitrification. However, off-gas analysis found that the final denitrification product was mainly nitrous oxide (N2O) not N2. Further experimental results demonstrated that nitrogen removal was via nitrite, not nitrate. These experiments also showed that denitrifying glycogen-accumulating organisms rather than denitrifying polyphosphate-accumulating organisms were responsible for the denitrification activity.  相似文献   

4.
Sulfur denitrification was applied to the agricultural field and the characteristics of the treatment were evaluated from the viewpoints of nitrate removal efficiency and nitrous oxide (N2O) emission. Two actual sites where sulfur denitrification was performed were surveyed. One is a valley bottom field, where groundwater contaminated with nitrate is coming up as spring water. The nitrate concentration in influent was about 45 mgN/L. The other was wastewater from a plastic greenhouse. The nitrate concentration in inflow water was about 200 mgN/L. Nitrate was almost removed by the containers packed with sulfur (S0)-CaCO3 blocks in both sites. Increase of sulfate indicated that nitrate was removed by sulfur denitrification. This was also estimated stoichiometrically from the relationships between the removed nitrate and produced sulfate. The N2O was supersaturated in water at most sampling points and the highest concentration of dissolved N2O reached 900 microgN/L in Saitama in March. It seemed that insufficient nitrate removal caused accumulation of intermediates during denitrification, such as nitrite and N2O, in this month. However, the emission ratio of N2O to the removed nitrate during these processes was kept low, ranging from 0.01 to 0.19%, at both two sites throughout all surveys.  相似文献   

5.
A passive biofiltration process has been developed to enhance nitrogen removal from onsite sanitation water. The system employs an initial unsaturated vertical flow biofilter with expanded clay media (nitrification), followed in series by a horizontal saturated biofilter for denitrification containing elemental sulfur media as electron donor. A small-scale prototype was operated continuously over eight months on primary wastewater effluent with total nitrogen (TN) of 72.2 mg/L. The average hydraulic loading to the unsaturated biofilter surface was 11.9 cm/day, applied at a 30 min dosing cycle. Average effluent TN was 2.6 mg/L and average TN reduction efficiency was 96.2%. Effluent nitrogen was 1.7 mg/L as organic N, 0.93 mg/L as ammonium (NH(4)-N), and 0.03 as oxidized (NO(3) + NO(2)) N. There was no surface clogging of unsaturated media, nitrate breakthrough, or replenishment of sulfur media over eight months. Visual and microscopic examinations revealed substantially open pores with limited material accumulation on the upper surface of the unsaturated media. Material accumulation was observed at the inlet zone of the denitrification biofilter, and sulfur media exhibited surface cavities consistent with oxidative dissolution. Two-stage biofiltration is a simple and resilient system for achieving high nitrogen reductions in onsite wastewater.  相似文献   

6.
Nitrified leachate recirculation represents a promising strategy for a more sustainable landfill management. Our objective was to determine the reactions involved in nitrate reduction in municipal solid waste batch biodegradation tests. Anaerobic digestion of waste in the three control reactors showed a good reproducibility. In two test reactors, nitrate was added at various moments of the waste degradation process. We observed that: (1) H2S concentration controlled the nitrate reduction pathway: above a certain threshold of H2S, dissimilatory nitrate reduction to ammonium (DNRA) replaced denitrification. (2) N2O/N2 ratio varied with the organic carbon concentration: the lower the easily biodegradable carbon concentration, the higher the N2O/N2 ratio. (3) N2 was consumed after denitrification. The possibility of a nitrogen fixation reaction in the presence of NH4 is discussed. Nitrified leachate recirculation during acidogenesis should be avoided because of higher H2S production which could induce DNRA.  相似文献   

7.
不同氮源对黄花鸢尾净化富营养化水体的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
利用水生植物床系统研究了不同氮源(硝酸盐、亚硝酸盐、铵盐)对黄花鸢尾(Iris pseudoacorus)去除水体氮磷营养盐效率的影响,同时对植物的生长量、水体中叶绿素a含量、黄花鸢尾对氮磷的吸收利用以及氮循环细菌的分布和氧化亚氮的通量进行了综合研究。结果表明:黄花鸢尾对硝酸盐氮具有优先选择性,而对氨氮的去除效果较差。从植物总氮、总磷吸收量来看,3种氮源中硝酸盐氮>亚硝酸盐氮>氨氮;从氮循环菌分布和N2O释放量来看,硝酸盐氮>氨氮>亚硝酸盐氮。一定范围内,植物对营养盐的吸收随营养盐浓度增加而增加,但水体中营养盐浓度过高则会抑制植物的生长,浓度为80 mg/L的硝酸盐氮,亚硝酸盐氮和氨氮都对黄花鸢尾生长有抑制作用,尤其是高浓度氨氮溶液中,植物的湿重明显减少,因此,黄花鸢尾更适宜治理硝酸盐污染的水体。  相似文献   

8.
The denitrification process, namely the reduction of nitrate (NO3-) to nitrogen gas (N2), often cannot be simply modelled as a single step process. For a more complete and comprehensive model the intermediates, particularly nitrite (NO2-) and nitrous oxide (N2O), need to be investigated. This paper demonstrates the integration of titrimetric measurements and off-gas analysis with on-line nitrite plus nitrate (NOx-) biosensors, highlighting the necessity of measuring process intermediates with high time-scale resolution to study and understand the kinetics of denitrification. Investigation of activated sludge from a full-scale treatment plant showed a significant accumulation of NO2-, which appeared to impact on the overall denitrification rate measured as NOx- reduction or N2 production. A different sludge obtained from a lab-scale bioreactor produced N2O instead of N2 as the end product of denitrification. The two examples both illustrate the complexity of denitrification and stress the need for the more versatile and detailed measurement procedures, as presented in this paper.  相似文献   

9.
For economic and efficient nitrogen removal from wastewater treatment plants via simultaneous nitrification and denitrification the nitrification process should stop at the level of nitrite such that nitrite rather than nitrate becomes the substrate for denitrification. This study aims to contribute to the understanding of the conditions that are necessary to improve nitrite reduction over nitrite oxidation. Laboratory sequencing batch reactors (SBRs) were operated with synthetic wastewater containing acetate as COD and ammonium as the nitrogen source. Computer controlled operation of the reactors allowed reproducible simultaneous nitrification and denitrification (SND). The oxygen supply was kept precisely at a low level of 0.5 mgL(-1) and bacterial PHB was the only electron donor available for denitrification. During SND little nitrite or nitrate accumulated (< 20% total N), indicating that the reducing processes were almost as fast as the production of nitrite and nitrate from nitrification. Nitrite spiking tests were performed to investigate the fate of nitrite under different oxidation (0.1-1.5 mgL(-1) of dissolved oxygen) and reduction conditions. High levels of reducing power were provided by allowing the cells to build up to 2.5 mM of PHB. Nitrite added was preferentially oxidised to nitrate rather than reduced even when dissolved oxygen was low and reducing power (PHB) was excessively high. However, the presence of ammonium enabled significant reduction of nitrite under low oxygen conditions. This is consistent with previous observations in SBR where aerobic nitrite and nitrate reduction occurred only as long as ammonium was present. As soon as ammonium was depleted, the rate of denitrification decreased significantly. The significance of the observed strongly stimulating effect of ammonium on nitrite reduction under SND conditions is discussed and potential consequences for SBR operation are suggested.  相似文献   

10.
Use of biopolymers as solid substrates for denitrification   总被引:2,自引:0,他引:2  
The conventional process to remove nitrate from water, the biological denitrification, uses the addition of dissolved organic carbon that has the potential risk to further deteriorate water quality. Thus, this work aimed to evaluate the specific denitrification activity of a mixed microbial culture and a pure culture of Pseudomonas stutzeri with solid substrates such as polycaprolactone (PCL), polylactic acid (PLA), and starch. The highest nitrate reduction activity was obtained with a microbial mixed culture using starch, 104 mg N(2)-N/(g VSS.d), and PCL, 97 mg N(2)-N/(g VSS.d), followed by PLA, 53 mg N(2)-N/(g VSS.d). A considerable advantage of using biopolymers in water denitrification is the reduced risk of contaminating the water with soluble biodegradable organic carbon.  相似文献   

11.
In wastewater treatment plants with anaerobic sludge digestion, 15-20% of the nitrogen load is recirculated to the main stream with the return liquors from dewatering. Separate treatment of this ammonium-rich digester supernatant significantly reduces the nitrogen load of the activated sludge system. Two biological applications are considered for nitrogen elimination: (i) classical autotrophic nitrification/heterotrophic denitrification and (ii) partial nitritation/autotrophic anaerobic ammonium oxidation (anammox). With both applications 85-90% nitrogen removal can be achieved, but there are considerable differences in terms of sustainability and costs. The final gaseous products for heterotrophic denitrification are generally not measured and are assumed to be nitrogen gas (N2). However, significant nitrous oxide (N2O) production can occur at elevated nitrite concentrations in the reactor. Denitrification via nitrite instead of nitrate has been promoted in recent years in order to reduce the oxygen and the organic carbon requirements. Obviously this "achievement" turns out to be rather disadvantageous from an overall environmental point of view. On the other hand no unfavorable intermediates are emitted during anaerobic ammonium oxidation. A cost estimate for both applications demonstrates that partial nitritation/anammox is also more economical than classical nitrification/denitrification. Therefore autotrophic nitrogen elimination should be used in future to treat ammonium-rich sludge liquors.  相似文献   

12.
In this study a single-well, "push- pull" test method is adapted for determination of in situ denitrification rates in groundwater aquifers. The rates of stepwise reduction of nitrate to nitrite, nitrous oxide, and molecular nitrogen were determined by performing a series of push-pull tests. The method consists of the controlled injection of a prepared test solution ("push") into an aquifer followed by the extraction of the test solution/ground water mixture ("pull") from the same location. The injected test solution consists of ground water containing a nonreactive tracer and one or more biologically reactive solutes. Reaction rate coefficients are computed from the mass of reactant consumed and/or product formed. A single Transport Test, one Biostimulation Test, and four Activity Tests were conducted for this study. Transport tests are conducted to evaluate the mobility of solutes used in subsequent tests. These included bromide (a conservative tracer), fumarate (a carbon and/or source), and nitrate (an electron acceptor). Extraction phase breakthrough curves for all solutes were similar, indicating apparent conservative transport of the solutes prior to biostimulation. Biostimulation tests were conducted to stimulate the activity of indigenous heterotrophic denitrifying microorganisms and consisted of injection of site ground water containing fumarate and nitrate. Biostimulation was detected by the simultaneous production of carbon dioxide and nitrite after each injection. Activity tests were conducted to quantify rates of nitrate, nitrite, and nitrous oxide reduction. Estimated zero-order degradation rates decreased in the order nitrate > nitrite > nitrous oxide. The series of push-pull tests developed and field tested in this study should prove useful for conducting rapid, low-cost feasibility assessments for in situ denitrification in nitrate-contaminated aquifers.  相似文献   

13.
The eutrophication of Chaohu Lake in China is mainly attributed to nitrate inflow from non-point sources in the lake catchment. In this study,biological nitrate reduction from groundwater in the Chaohu Lake Catchment was investigated under laboratory conditions in a continuous upflow reactor. Sodium acetate served as the carbon source and electron donor. Results showed that a carbon-to-nitrogen(C/N) molar ratio of 3:1 and hydraulic retention time(HRT) of 8 d could achieve the most rapid nitrate nitrogen(NO_3~--N) depletion(from 100 mg/L to 1 mg/L within120 h). This rate was confirmed when field groundwater was tested in the reactor, in which a NO_3~--N removal rate of 97.71% was achieved(from60.35 mg/L to 1.38 mg/L within 120 h). Different levels of the initial NO_3~--N concentration(30, 50, 70, and 100 mg/L) showed observable influence on the denitrification rates, with an overall average NO_3~--N removal efficiency of 98.25% at 120 h. Nitrite nitrogen(NO_2~--N)accumulated in the initial 12 h, and then kept decreasing, until it reached 0.0254 mg/L at 120 h. Compared with the initial value, there was a slight accumulation of 0.04 mg/L for the ammonia nitrogen(NH4-N) concentration in the effluent, which is, however, less than the limit value.These results can provide a reference for evaluating performance of denitrification in situ.  相似文献   

14.
Abilities of three aerobic denitrifiers such as Alcaligenes faecalis, Microvirgula aerodenitrificans and Paracoccus pantotrophus were compared from the viewpoints of nitrate removal efficiency and organic matter utilization. First, the effect of carbon source was investigated. Although nitrate reduction was observed in all strains under aerobic conditions, a change of carbon source considerably affected the denitrification ability. In the case of P. pantotrophus, nitrate and nitrite were completely removed in three days under sodium acetate or leucine as a carbon source. In the case of A. faecalis, sufficient nitrate removal was observed only when sodium acetate or ethanol was added. P. pantotrophus and A. faecalis showed a higher ability of nitrate removal than that of M. aerodenitrificans. Therefore, P. pantotrophus was selected in order to investigate the effects of concentration and repetitive addition of carbon. Sodium acetate was used as a sole carbon source. Nitrate was not reduced when the carbon concentration was below 500 mgC/L. However, when carbon source was added repeatedly, nitrate was reduced under 100 mgC/L after the optical density of the bacterium reached above 1.0. This result indicated that a high enough level of bacterial density was necessary to express aerobic denitrification activity.  相似文献   

15.
Nitrogen removal involving nitrification and denitrification was investigated in a fluidized bed bioreactor by using mixed culture sludge under oxygen-limited conditions. Methane was used as a sole carbon source for denitrification. In this study, optimal nitrification and denitrification rates were examined by varying methane and oxygen gas dissolution flow rates, 90 ml/min, 400 ml/min and 650 ml/min, in each. Simultaneously nitrification and denitrification was achieved. The total nitrogen removal rate was 15-mg N/g VSS. d, 21-mg N/g VSS. d and 26.4-mg N/g VSS. d at gas dissolution flow rate 90 ml/min, 400 ml/min and 650 ml/min, respectively. No significant accumulation of nitrite was found in this experiment. Nitrogen removal rates depend on gas dissolution flow rates. DO concentration was at 0.5-2 mg/L.  相似文献   

16.
An indigenous mixed culture of microorganisms, isolated from a sewage treatment plant, was investigated for its potential to simultaneously degrade phenol and m-cresol during its growth in batch shake flasks. 2(2) full factorial designs with the two substrates as the factors, at two different levels and two different initial concentration ranges, were employed to carry out the biodegradation experiments. For complete utilisation of phenol and m-cresol, the culture took a minimum duration of 21 hrs at their low concentration of 100 mg/L each, and a maximum duration of 187 hrs at high concentration of 600 mg/L each in the multisubstrate system. The biodegradation results also showed that the presence of phenol in low concentration range (100-300 mg/L did not inhibit m-cresol biodegradation; on the other hand, presence of m-cresol inhibited phenol biodegradation by the culture. Moreover, irrespective of the concentrations used, phenol was degraded preferentially and earlier than m-cresol. During the culture growth, a lag phase was observed above a combined concentration of 500 mg/L i.e., 200 mg/L m-cresol and 300 mg/L of phenol and above). Statistical analysis of the specific growth rate of the culture in the multisubstrate system was also performed in the form of ANOVA and Student 't' test, which gave good interpretation in terms of main and interaction effects of the substrates.  相似文献   

17.
The reactive (fixed) nitrogen (Nr) budget for Lake Michigan was estimated, making use of recent estimates of watershed and atmospheric nitrogen loads. Reactive N is considered to include nitrate, nitrite, ammonium, and organic N. The updated Nr load to Lake Michigan was approximately double the previous estimate from the Lake Michigan Mass Balance study for two reasons: 1) recent estimates of watershed loads were greater than previous estimates and 2) estimated atmospheric dry deposition and deposition of organic N were included in our budget. Atmospheric and watershed Nr loads were nearly equal. The estimated loss due to denitrification at the sediment surface was at least equal to, and possibly much greater than, the combined loss due to outflow and net sediment accumulation. Within the considerable uncertainty of the denitrification estimate, the budget was nearly balanced, which was consistent with the slow rate of accumulation of nitrate in Lake Michigan (~ 1%/yr). The updated loads were used to force the LM3-PP biogeochemical water quality model. Simulated water column concentrations of nitrate and organic nitrogen in the calibrated model were consistent with available observational data when denitrification was included at the sediment surface at a rate that is consistent with literature values. The model simulation confirmed that the estimated denitrification rate does not exceed the availability of settling organic N mass. Simulated increase (decrease) in nitrate concentration was sensitive to model parameters controlling supply of sediment organic N, highlighting the importance of internal processes, not only loads, in controlling accumulation of N.  相似文献   

18.
Nitrification via nitrite was studied in two aerobic reactors treating wastewater from an aminoplastic resin producing factory at HRT varying between 1.37-1.89 and 2.45-3.63 days. Both eactors were fed with concentrations of 366, 450, 1099 and 1899 mg N-NH4+/L. In general in the reactor operated at a lower HRT, the nitritation percentage decreased from 87.2 to 21.6%, while the nitratation percentage remained always lower than 2.5% (except in the last period) when the ammonium concentration was increased. This behaviour could be due to the inhibition of the ammonium and nitrite oxidation produced by high free ammonia concentrations up to 179.3 mg N-NH3/L. In the reactor operated at a higher HRT, the nitritation percentage decreased and the nitratation percentage increased from 88.6 to 39.6% and from 0.65 to 35.7%, respectively, due to an increase of the dissolved oxygen concentration from 0.76 to 1.02 mg O2/L. However, when ammonium was fed at a concentration of 1898.7 mg N-NH4+/L, the nitritation increased and the nitratation decreased, probably as a result of the accumulation of free ammonia up to 2.04 mg N-NH3/L, meaning that nitrite oxidizers were inhibited. Nitrite build-up was observed after each modification of ammonium concentration in the feed.  相似文献   

19.
An integrated anaerobic-aerobic treatment system of sulphate-laden wastewater was proposed here to achieve low sludge production, low energy consumption and effective sulphide control. Before integrating the whole system, the feasibility of autotrophic denitrification utilising dissolved sulphide produced during anaerobic treatment of sulphate rich wastewater was studied here. An upflow anaerobic sludge blanket reactor was operated to treat sulphate-rich synthetic wastewater (TOC=100 mg/L and sulphate=500 mg/L) and its effluent with dissolved sulphide and external nitrate solution were fed into an anoxic biofilter. The anaerobic reactor was able to remove 77-85% of TOC at HRT of 3 h and produce 70-90 mg S/L sulphide in dissolved form for the subsequent denitrification. The performance of anoxic reactor was stable, and the anoxic reactor could remove 30 mg N/L nitrate at HRT of 2 h through autotrophic denitrification. Furthermore, sulphur balance for the anoxic filter showed that more than 90% of the removed sulphide was actually oxidised into sulphate, thereby there was no accumulation of sulphur particles in the filter bed. The net sludge productions were approximately 0.15 to 0.18 g VSS/g COD in the anaerobic reactor and 0.22 to 0.31 g VSS/g NO3- -N in the anoxic reactor. The findings in this study will be helpful in developing the integrated treatment system to achieve low-cost excess sludge minimisation.  相似文献   

20.
The aim of this study is to isolate denitrifying bacteria utilizing epsilon-caprolactam as the substrate, from a polyacrylonitrile fibre manufactured wastewater treatment system. The aim is also to compare the performance of PAN (polyacrylonitrile) mixed bacteria cultures acclimated to epsilon-caprolactam and isolated pure strain for treating different initial epsilon-caprolactam concentrations from synthetic wastewater under anoxic conditions. The result showed that the PAN mixed bacteria cultures acclimated to epsilon-caprolactam could utilize 1538.5 mg/l of epsilon-caprolactam as a substrate for denitrification. Sufficient time and about 2200 mg/l of nitrate were necessary for the complete epsilon-caprolactam removal. Paracoccus thiophilus was isolated from the polyacrylonitrile fibre manufactured wastewater treatment system and it could utilize 1722.5 mg/l of epsilon-caprolactam as a substrate for denitrification. About 3500 mg/l of nitrate was necessary for the complete removal of epsilon-caprolactam. When the initial epsilon-caprolactam concentration was below 784.3 mg/l, the removal efficiency of epsilon-caprolactam by Paracoccus thiophilus was better than that for the PAN mixed bacteria cultures. The growth of Paracoccus thiophilus was better. However, when the initial epsilon-caprolactam concentration was as high as 1445.8 mg/l, both the epsilon-caprolactam removal efficiency by Paracoccus thiophilus and Paracoccus thiophilus specific growth rate were similar to the PAN mixed bacteria cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号