首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
在许多强吸热化学反应的化工过程中,常常需要对反应流体流出反应器时进行快速急冷来避免副反应或逆反应发生,以期最终获得可观的目标产物。在本实验室前期开展的热等离子体裂解二氧化碳实验研究中,采取在高温反应器出口加装收缩喷管将裂解气高速导入夹套水冷管的方法,实现了对高温裂解气的快速急冷,显著地避免了裂解气中CO与O的逆反应,获得了意想不到的CO_2高转化率。本文利用计算流体力学软件模拟这一过程,以期揭示这种新的冷却方法导致极快速冷却的机制。模拟结果表明,加装收缩喷嘴确实可以期待对高温射流产生10~7 K·s~(-1)量级的温降速率。深入分析表明,仅仅靠气体动力学效应不能完全解释如此快速的冷却速率。从喷管高速喷出的黏性流体在夹套水冷管内形成高速涡流,这种涡流一方面增强了主流体对周围气体的卷吸,另一方面加强了被卷吸流体在被卷入之前与夹套水冷管壁面的强制换热过程,是导致快速急冷的主要机制。  相似文献   

2.
利用计算流体动力学(computational fluid dynamic,CFD)方法对含新型内插件强化传热辐射炉管(fortified induced turbulence,FIT)进行了流体流动与传热特性的研究,采用RNG双方程模型求解了动量方程和能量方程,给出了FIT炉管内的流体流动和传热特性,包括速度场、湍动强度和温度场的分布;计算了FIT炉管的强化传热因子和压降。研究结果表明,FIT炉管内插件迫使流体流动由活塞流转变为旋转流,增强了流动湍流程度,符合流动-能量场协同理论,同时流体边界层由于FIT炉管的特殊结构而减薄。FIT炉管具有增强辐射传热、减薄边界层、增加比表面积和旋流增强等强化传热特性。相比于普通当量圆炉管,FIT强化传热炉管的整体传热能力提高了20%左右,证明该新型炉管强化传热效果显著,可以在工程实际中应用。  相似文献   

3.
运用CFD软件对急冷换热器内管中的裂解气流体分配情况进行了模拟,得出了3种流道下的流体分配情况。模拟结果表明,通过增加流体分配器或者改变部分内管结构都可有效地改善内管中的流体分配情况。  相似文献   

4.
5.
薄膜蒸发器内流体流动特性的数值模拟   总被引:6,自引:0,他引:6  
建立了薄膜蒸发器的计算模型,采用大型计算流体力学(CFD)分析软件CFX4.4模拟了薄膜蒸发器内水及粘性料液的流动过程,得到了各种速度分布. 结果表明,刮板转速、进料量对流体流动状态影响显著. 提高刮板转速,可明显促进液膜和圈形波内流体的物质交换. 在任一转速下,各料液均存在同一最佳进料量,此时其圈形波截面内平均速度达到最大值. 对纯物质水,最佳进料量对应的流动边界层厚度与膜厚之比最小. 粘性料液和水的轴向速度分布存在差异,且在液膜厚度内未形成明显的流动边界层.  相似文献   

6.
自主研制了一种新型多级规整填料浮选柱,应用计算流体力学软件FLUENT6.3.26进行数值模拟计算,对其内部的气液两相流动进行了考察,采用了欧拉-欧拉多相流模型,对气相的模拟采用单一气泡尺寸,液相湍流采用了标准k-ε模型,两相之间的动量传输仅考虑曳力作用。通过模拟,获得了不同实验条件下浮选柱内部的气液速度场分布、气含率分布等,对部分模拟结果进行了定量比较。结果表明随着气相流量的增大,浮选柱内部气含率增大,液体循环速度增大,从而气液之间混合更加充分,这对于提高浮选柱的分选效率和设备的放大有重要意义。在唐山钱家营开滦煤矿选煤厂进行了以其煤浆为原料的浮选性能的测试,在气体1.25 m3/h,进料0.05 L/h条件下20 min停留时间获得了精煤灰分10.28%,尾煤灰分43.39%,精煤产率52.53%的指标,与该厂浮选精煤灰分10.58%相接近。  相似文献   

7.
在气固两相流体动力学模型的基础上.采用基于机理反应的FCC14集总模型.考虑了反应温度、局部固体浓度变化以及流动对反应的影响,建立了重油流化催化裂化流动一一反应耦合模型.模拟结果表明,重油裂化反应主要发生在喷嘴附近区域,在喷嘴附近已经有45%的重油转化为汽油和柴油.随着距离喷嘴位置的增加,汽油产率逐渐上升,但距离喷嘴位置12m以后,汽油产率基本保持不变.从汽油组成变化来看,在整个提升管内汽油中烯烃含量一直处于下降趋势,由喷嘴区域的60wt%降低到提升管出口位置的42wt%左右.汽油烷烃含量一直呈增加趋势,而汽油中环烷烃含量和芳烃含量变化较小.  相似文献   

8.
为了研究洗涤冷却环内冷却水流动的情况,借助计算流体力学软件Fluent建立了洗涤冷却环流体冷态流动的数学模型,同时为了验证模型的可靠性,对洗涤冷却环出口处的流动情况进行了实验研究,实验结果与模拟结果基本吻合。结果表明:因为洗涤冷却环的结构限制,其内部存在多处涡旋区域;内室入水口周向位置处的涡旋运动最为剧烈;受其影响,入水口周向位置的射流孔出口平均速度最小,两入水口之间周向位置的射流孔出口平均流速最大;槽缝出口的平均流速在周向上的分布与射流孔出口平均流速分布相同。  相似文献   

9.
烟气脱硝是火力发电厂环保重要环节,脱硝装置内部流动特性直接影响其性能,为了分析还原剂喷射夹角对还原剂分布的影响.本文采用计算流体数值模拟的方式对脱硝装置内部流动过程进行模拟计算,可为今后CFB锅炉再脱硝环节的优化设计奠定基础。  相似文献   

10.
由于搅拌过程中流场的复杂性,选用何种型号的搅拌器从而提高搅拌效率、降低能耗是搅拌设计中的关键。本文借助Fluent软件分析六直叶开启涡轮式搅拌器的桨叶直径、转速对搅拌的影响,并对比了在同一工况下平直叶圆盘涡轮式搅拌器和六直叶涡轮搅拌器的搅拌效果。  相似文献   

11.
沈艳涛  于建国 《化工学报》2007,58(3):745-749
在石油、化工等行业中经常使用具有较强毒害性的危险物质,如氯气,一般以加压贮罐形式存储。在其生产、储存和运输过程中,泄漏事故发生频率较高。在化工系统泄漏事故发生频率较高的氯气、氨、氯乙烯和液化石油气等,泄漏后的气云扩散行为表现为重气扩散过程,即气云先下沉,在地面和低洼的地方聚集,然后与大气混合而慢慢稀释,云团在扩散稀释过程中对地面人员、设备的危害严重。因此对其扩散过程进行研究以减小事故后果有很强的现实意义。  相似文献   

12.
有毒有害气体泄漏的CFD数值模拟(Ⅰ)模型建立与校验   总被引:8,自引:2,他引:6  
沈艳涛  于建国 《化工学报》2007,58(3):745-749
引言 在石油、化工等行业中经常使用具有较强毒害性的危险物质,如氯气,一般以加压贮罐形式存储。在其生产、储存和运输过程中,泄漏事故发生频率较高.在化工系统泄漏事故发生频率较高的氯气、氨、氯乙烯和液化石油气等,泄漏后的气云扩散行为表现为重气扩散过程,即气云先下沉,在地面和低洼的地方聚集,然后与大气混合而慢慢稀释[1],云团在扩散稀释过程中对地面人员、设备的危害严重.因此对其扩散过程进行研究以减小事故后果有很强的现实意义.  相似文献   

13.
采用(RNG)k-ε湍流模型及颗粒轨道模型,运用计算流体力学软件Fluent对垃圾焚烧烟气喷雾干燥脱酸塔内流场进行数值模拟。结果表明,喷雾浆滴较大程度地影响了脱酸塔内的流场,局部区域内发生的强烈湍流流动,会促进塔内气液传质和化学反应过程。  相似文献   

14.
建立了高炉渣颗粒运动与换热过程的数学模型,利用FORTRAN语言编写程序,通过四阶Runge?Kutta方法求解其动力学和传热方程,计算时充分考虑熔渣与冷却空气主要热物性参数随温度的变化,采用温度回升法计算熔渣凝固过程释放的潜热,提出在气淬空气中添加喷雾强化熔渣冷却,考察了渣粒尺寸对换热过程的影响。结果表明,飞行过程中渣粒速度受气淬空气影响先增大后减小;温度降低趋势随运动距离增加而减小,主要受对流换热系数影响,凝固过程持续时间较短;喷雾使渣粒在飞行过程中整体冷却速率明显升高,最终温度明显降低,而对熔渣的运动影响较小;相同初始工况下,熔渣粒径越小,运动越易受流场影响,渣粒整体冷却速率较高,换热效果越好。  相似文献   

15.
计算流体力学(CFD)用于求解固定几何形状设备内的流体的动量、热量和质量方程以及相关的其他方程,已成为研究化工领域中流体流动和传质的重要工具。本文概述了CFD的基本原理以及CFD在化学工程领域方面的应用,重点介绍了CFD在搅拌槽、换热器、蒸馏塔、薄膜蒸发器、燃烧等方面的应用。  相似文献   

16.
《化工进展》2017,36(12)
基于自主设计的同轴撞击流反应器;运用计算机流体力学(CFD)数值模拟技术对内管开孔进行了优化设计。首先通过单因素试验确定了反应液在内外管入口处的速度比例;在此基础上;分别以开孔排数N、内管轴向孔间距L、内管径向开孔个数n及开孔直径D为试验因素;设计正交试验。对每组试验进行数值模拟;以距入口顶端不同距离处微孔的速度均方根差为评价指标;得到内管开孔的优化设计方案为:反应器内管沿轴向均匀开设6排微孔;每排微孔间距为12mm;径向均匀开设5个微孔;孔径均为0.5mm。基于正交试验的优化结果;对模型进行重新定义并对其环形微通道反应区内的流场结构进行数值模拟分析;结果表明:开孔处产生的撞击束均有较高的速度梯度;并且反应液在环形微通道反应区内发生强烈撞击;并发生充分混合与反应;实现了内管开孔的最优化设计。  相似文献   

17.
谢乐  罗正鸿 《化工进展》2019,38(1):72-79
自由基聚合过程中,由于混合、传递及聚合反应的相互作用使得反应器内部存在复杂的多尺度流场,例如宏观尺度的速度、浓度、温度分布,介观尺度的液滴粒径分布,微观尺度的聚合反应速率、聚合物分子量和多分散性指数分布。这些复杂的多尺度流场分布使得聚合反应器的模型化研究成为难题。本文较为系统地介绍了自由基聚合反应器中存在的多尺度现象;简述了微观尺度聚合物性质流场分布的模型化与模拟研究方法;从悬浮聚合和乳液聚合两个方面介绍了介观尺度液滴粒径分布的模拟研究进展;从非理想混合的角度阐述了宏观尺度多相流流场分布的研究进展。最后,本文分析了多尺度模型的耦合求解方法。本综述也有本文作者对这个领域的初步观点,可为聚合反应器的设计、优化和放大提供参考。  相似文献   

18.
房建宇  李士伟 《当代化工》2016,(6):1276-1278
钻井是开发石油资源一个非常重要的环节和技术手段,井中岩屑易在井眼底部形成岩屑床,导致下钻遇阻、蹩泵甚至卡钻,因此岩屑运移机理的研究对钻井作业来说至关重要。通过对现场实际情况的调研,得到井下上返颗粒的直径范围,进行数值模拟。运用Solid Works对井下环形空间进行建模与装配,得到井下环形空间的三维模型。使用软件建立井下环形空间的简化模型,通过应用FLUENT中动网格部分的UDF编写成功地实现了钻杆的旋转。运用FLUENT数字模拟软件,通过对流体非定常流的数值模拟,对岩屑在环形空间的运移规律进行研究,模拟条件更加接近实际情况,结果更加精确,可以为钻井井眼清洁工作提供科学参考。  相似文献   

19.
计算流体力学技术(CFD)是进行流场计算、分析和预测的专用工具,在科学实验及工业中应用广泛。为了了解黄磷电炉内部流场温度分布、气体走向、炉体温度分布情况,应用CFD技术,对黄磷电炉进行分析、简化,选择合适的模型进行仿真模拟,实现电炉内部流场的重现,对黄磷电炉中的放大、改造、设计有指导意义。  相似文献   

20.
In the radiant section of cracking furnace, the thermal cracking process is highly coupled with turbulent flow, heat transfer and mass transfer. In this paper, a three-dimensional simulation of propane pyrolysis reactor tube is performed based on a detailed kinetic radical cracking scheme, combined with a comprehensive rigorous computational fluid dynamics(CFD) model. The eddy-dissipation-concept(EDC) model is introduced to deal with turbulence-chemistry interaction of cracking gas, especially for the multi-step radical kinetics. Considering the high aspect ratio and severe gradient phenomenon, numerical strategies such as grid resolution and refinement, stepping method and relaxation technique at different levels are employed to accelerate convergence. Large scale of radial nonuniformity in the vicinity of the tube wall is investigated. Spatial distributions of each radical reaction rate are first studied, and made it possible to identify the dominant elementary reactions. Additionally, a series of operating conditions including the feedstock feed rate, wall temperature profile and heat flux profile towards the reactor tubes are investigated. The obtained results can be used as scientific guide for further technical retrofit and operation optimization aiming at high conversion and selectivity of pyrolysis process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号