首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
螺旋槽干气密封端面间气膜特性   总被引:19,自引:6,他引:19       下载免费PDF全文
蒋小文  顾伯勤 《化工学报》2005,56(8):1419-1425
螺旋槽干气密封是一种新型的非接触式机械密封,它具有介质泄漏量少、端面磨损小、能耗低、运行寿命长和可靠性高等优点.采用有限元法对螺旋槽干气密封端面间气体的流动过程进行了数值模拟研究,得到了端面间气膜的压力分布规律并对主要的密封性能参数——开启力、端面摩擦力、摩擦功耗、轴向刚度以及泄漏量进行了计算,最后,探讨了操作参数和端面槽形几何参数对密封性能的影响.研究结果为螺旋槽干气密封的设计提供了有益的参考.  相似文献   

2.
干气密封环端面在启停阶段和由于制造装配误差等造成非正常运行时存在严重的端面接触摩擦,有必要对干气密封动静环进行摩擦学试验,从而分析并探讨其摩擦学特性。利用端面摩擦磨损试验机,选定合适的工况参数与相应的测试技术对螺旋槽干气密封环进行测试,研究不同工况下的摩擦学特性。结果表明:在特定工况下的试验中,螺旋槽干气密封端面存在明显的磨合现象;当工况从226 N、150 r·min~(-1)增大至1130 N、500 r·min~(-1)时,石墨环磨损量最大增加193.3%,摩擦系数最大降低22.3%,说明石墨环的自润滑性影响密封端面的摩擦性能;由于端面间螺旋槽的存在,石墨环内圈磨损大于外圈。试验结果可为今后端面摩擦学性能的优化提供依据。  相似文献   

3.
基于穆特曼方程,以MATLAB计算干气密封性能参数,计算结果与实验数据、CFD软件模拟结果比较表明:MATLAB编程解决密封端面流场分析的方法可靠。为进一步研究螺旋槽干气密封端面压力分布规律,优化密封性能、提高运行稳定性提供了一种简单直观的方法。  相似文献   

4.
CFD软件对螺旋槽干气密封的模拟   总被引:3,自引:0,他引:3  
采用了通用计算流场分析软件fluent,使用gambit软件建立三维计算模型并划分网格。基于三维N-S方程,选用RNG K-ε湍流模型与SIMPLEC算法,对螺旋槽气体密封的三维流场进行了数值研究。通过验证。表明流场的数值计算结果与文献中的试验值吻合较好,模拟了气膜场的压力分布。对进一步研究具有指导意义和实用价值。  相似文献   

5.
以西安石油大学干气密封装置为实验平台,选择常用的螺旋槽干气密封,分别在相同转速不同压力和相同压力不同转速的工况下,测量干气密封的泄漏量。通过分析得到转速和压力与干气密封泄漏量之间的关系,为干气密封的研究提供实验指导。  相似文献   

6.
在干气密封的研究时,一般将使用的工艺气体处理为纯气体。虽然干气密封装置系统有干燥和过滤设备,但工艺气体在处理后仍不可避免的含有固体微粒。本文以螺旋槽干气密封应用于合成氨为例,使用Fluent软件对纯气体与含有微粒的工艺气体进行了研究,获得了两者对干气密封性能的影响。  相似文献   

7.
典型螺旋槽端面干式气体密封动压开启性能   总被引:5,自引:6,他引:5       下载免费PDF全文
型槽端面干式气体密封的开启特性对密封的启动、停车和运行具有重要实际意义。基于气体混合润滑理论,考虑密封端面粗糙度效应和端面间气体滑移流效应,建立了干式气体密封的动压开启性能分析模型。开展了螺旋槽端面干式气体密封、带内环槽的螺旋槽端面干式气体密封和雁型槽端面干式气体密封等三种典型型槽端面干式气体密封的临界动压开启性能研究,数值分析了不同工况下三种型槽密封端面气膜压力分布,研究了环颈长比、环颈宽比、平衡比、弹簧比压和密封压力对临界开启转速、动压开启力比等开启性能参数的影响规律。结果表明:端面型槽的动压效应直接决定干式气体密封的临界开启转速,平衡比、弹簧比压对密封的动压开启性能影响较大,而环颈长比影响很小;在相同操作条件下,三种型槽端面密封相比较,雁型槽端面干式气体密封最易开启,带内环槽的螺旋槽端面干式气体密封次之,螺旋槽端面干式气体密封最难开启。  相似文献   

8.
采用激光加工法对螺旋槽干气密封端面动压槽进行加工,并进行端面压强的测试。在静环端面相隔120°且不同的径向位置安装3个传感器,测定端面螺旋槽沿着径向产生的压强。通过改变螺旋角、槽深和螺旋槽槽数来试验研究端面产生的动压效果。试验表明,采用激光加工方法能够得到很好的加工精度,达到样机试验的要求;在确定的工况下,当螺旋角在16°时产生的压强最大,压强随着槽深和槽数的增加而增大,最大压强在槽根部。  相似文献   

9.
旋转式压缩机和泵用螺旋槽端面密封   总被引:1,自引:0,他引:1  
叙述了旋转式压缩机和泵采用螺旋槽端面密封的结构、密封原理、特性、应用实例、选用和注意点及今后的展望。  相似文献   

10.
吴定邦 《化工设计》1996,6(1):25-29
介绍螺旋槽干气密封的操作原理以及可行的密封布置,讨论密封对操作条件变化的补偿原理,并说明其优点和应用。  相似文献   

11.
中低压干气密封螺旋槽结构参数优化   总被引:16,自引:5,他引:11       下载免费PDF全文
基于完全析因设计方法,开展中低压干气密封端面螺旋槽几何结构参数优化.基于气体润滑理论,对中低压条件下螺旋槽干气密封的动压开启力增长率、气膜刚度和刚漏比等密封特性参数进行分析,获得了中压和低压条件下螺旋槽几何结构参数的优选值范围,提出"螺旋槽干气密封特性参数优化带".结果表明:特性参数优化带能较好地反映螺旋槽干气密封在不同压缩数下的最优性能水平;在中低压高速条件下,当螺旋角b=10°~25°,槽深hg=5~10 mm时能获得较优的密封性能;当槽坝比ag=1.5~4.0,槽长宽比l=2~8时能获得较好的动压效应和轴向气膜稳定性;当槽坝比ag=0.7~1.5,槽长宽比l=2~5时能获得较好的综合密封性能.  相似文献   

12.
宋鹏云  张帅  许恒杰 《化工学报》2016,67(4):1405-1415
为分析考虑实际气体效应和滑移流效应的螺旋槽干气密封性能,通过维里实际气体状态方程代替理想气体状态方程、有效黏性系数代替动力黏度修正窄槽理论螺旋槽干气密封气膜压力控制方程。以氮气(N2)、氢气(H2)、二氧化碳(CO2)为例,分别计算、对比无滑移理想气体、滑移理想气体、无滑移实际气体、滑移实际气体时螺旋槽干气密封的泄漏率、槽根处压力、端面开启力。结果表明:滑移流效应使气体泄漏率增大、槽根处压力和端面开启力降低;实际气体效应使易受压缩气体(压缩因子Z<1)的泄漏率、槽根压力、端面开启力增大,使不易受压缩气体(压缩因子Z>1)泄漏率、槽根压力、端面开启力减小。随着气体压力增大,滑移流效应逐渐减弱,而实际气体效应增强;低压下滑移流效应起主导作用,高压下实际气体效应起主导作用。  相似文献   

13.
干气密封单向螺旋槽及其衍生结构功能演变进展   总被引:1,自引:0,他引:1  
彭旭东  宗聪  江锦波 《化工学报》2017,68(4):1271-1281
螺旋槽干气密封(S-DGS)是一种典型的非接触式机械密封,在中高速旋转机泵的轴端密封装置中已得到广泛应用。本文对螺旋槽及不同型线单向螺旋槽DGS的研究现状进行了总结,系统归纳分析了为改善不同工况条件下DGS的气膜稳定性、密封性、耐磨性和疏水特性而演化出的各种螺旋槽衍生结构,并根据其功能特性将其归类为高速提稳型、高速减漏型、低速提稳型和疏水耐磨型4类型槽。指出进一步提高S-DGS在高速高压条件下的气膜稳定性和密封性、低速低压条件下的快速开启特性和气膜稳定性,以及超疏水、强耐磨型螺旋槽端面结构的仿生设计是未来研究的重点和热点,也是拓宽DGS应用领域、提高其工作可靠性和使用寿命的关键所在。  相似文献   

14.
基于气体润滑理论,建立了普通螺旋槽、上游泵送螺旋槽和双列螺旋槽三种典型螺旋槽干气密封(DGS)的稳、瞬态模型,采用有限差分法求解并获得了三种典型螺旋槽DGS的稳、瞬态密封性能参数。研究了三种典型螺旋槽DGS稳态性能差异的产生机理及不同膜厚扰动条件下干气密封瞬态性能的演变规律,定义了瞬态性能参数及其时间平均值相对稳态值的变化率,探究了膜厚扰动下的非线性效应对三种典型螺旋槽DGS瞬态性能的作用规律及稳态理论的适用范围。结果表明:上游泵送螺旋槽的开设对密封性有明显提升但对开启性有一定削弱;非线性效应的影响随膜厚扰动的增大而增大,在膜厚大幅扰动下,基于瞬态理论计算的密封性能参数平均值会明显大于稳态值,此时依靠稳态理论获得的计算结果误差较大;普通螺旋槽DGS受非线性因素的影响最小,在其稳态理论可接受的性能误差范围内,所允许的膜厚扰动相比另外两种螺旋槽DGS更大。  相似文献   

15.
为解决现有干气密封端面型槽型线方程表征能力不强和结构参数定义体系不统一的问题,提出了一种基于径向微段组合以表征任意形状型线的广义对数螺旋槽结构模型。给出了广义对数螺旋槽结构参数定义体系,对比了不同压力和速度条件下广义螺旋槽与经典螺旋槽干气密封的开启力、气膜刚度和泄漏率等稳态性能,重点研究了广义螺旋角分布和型线周向偏转两个特征量对干气密封性能的影响,基于不同目标函数获得了广义螺旋槽的最优形状。结果表明:型槽上游侧壁型线形状对各项稳态性能参数均有显著影响,而下游侧壁型线形状仅对泄漏率和气膜刚度影响显著;经典对数螺旋槽是一种流体动静压效应很强的端面结构,单纯依靠型线优化难以使气膜承载力显著提高,不过在低压高速条件下优化广义螺旋角分布,在高压低速条件下合适设置型线周向偏转有望提高干气密封的气膜刚度和刚漏比。  相似文献   

16.
胡琼  王衍  戴嵘  孙见君  郑小清 《化工学报》2019,70(3):1006-1015
基于激光技术的干气密封开槽方法,提出在圆弧线槽干气密封(A-DGS)槽底开设粗糙度量级的有序微造型,以提高开槽效率、降低成本。采用有限体积法对无微造型圆弧线槽干气密封进行仿真分析,通过与现有文献对比验证了仿真方法的正确性;对微造型结构进行分析和筛选,获得偏移迎风侧与偏移背风侧结构对密封性能影响基本无差,本研究基于偏移背风侧微造型结构进行深入研究;与无微造型圆弧线槽进行对比,分析了不同几何参数和工况参数下的开启力和泄漏量变化情况;最后对各参数的影响程度进行对比分析。结果表明:同工况下,具微造型圆弧线槽干气密封(MA-DGS)的开启力较A-DGS有一定提升,在低速高压及小槽深时提升效果最好;微造型深度和微造型宽间比对干气密封开启力的影响在给定情况下甚于膜厚与转速的影响;密封端面槽型结构优化参数不受槽底微造型设计的影响;基于Taguchi实验设计方法,可以便捷准确地获得不同影响因子的影响程度,帮助工程设计。  相似文献   

17.
许恒杰  宋鹏云  毛文元  邓强国 《化工学报》2017,68(12):4675-4684
以Chen等提出的氢气实际气体状态方程描述氢气的实际气体行为,以气体出口速度达到音速作为产生阻塞效应的条件,确定出口压力边界条件,采用小扰动法分析了干气密封操作参数对螺旋槽干气密封动态特性的影响规律,并与理想气体、强制出口压力边界模型中的动态特性系数进行了对比。结果表明:研究高压螺旋槽干气密封的动态特性时应当考虑实际气体效应和阻塞流效应。两种效应使氢气螺旋槽干气密封的直接动态气膜刚度减小,使直接动态气膜阻尼增大。随着压缩数、进口压力的增大,两种效应对动态气膜刚度的影响逐渐增强。以频率比为变量时,两种效应主要影响气膜刚度,对气膜阻尼的影响作用较小。针对所研究的工况,与理想气体和强制压力出口边界条件相比,考虑实际气体效应和阻塞流效应,以压缩数为变量时,动态气膜阻尼(Czz、Cαα、Cαβ)的平均偏差分别为2.28%、1.93%、2.79%;以进口压力为变量时,3种气膜阻尼的平均偏差分别达到4.08%、2.07%、1.82%。  相似文献   

18.
对干气密封原理和人字形螺旋槽干气密封技术特点进行了介绍。采用了最先进的轴封型式对循环氢气压缩机轴封系统进行了改造,改造为干气密封后,密封系统运行指标完全达到设计值,运行安全、平稳、可靠。  相似文献   

19.
柱面螺旋槽气膜密封微尺度流动场稳态特性分析   总被引:3,自引:2,他引:3       下载免费PDF全文
针对燃气轮机转子振动较大的特点,提出一种新型柱面螺旋槽气膜密封。利用考虑滑移边界条件下的微尺度效应稳态柱面雷诺方程,求解柱面气膜的压力的近似解析解,获得柱面螺旋槽气膜量纲1浮升力、泄漏量以及摩擦转矩,并讨论了工况参数和螺旋槽结构参数对稳态性能的影响。综合考虑参数对稳态特性的影响,提出优化结构参数。结果表明:密封压差对稳态特性的影响要远大于偏心率。在不同的偏心率下,螺旋槽槽数对浮升力的影响不明显,随着槽数的增加,摩擦转矩升高,泄漏量降低并在槽数n=12左右趋于稳定;随着槽深的增大,浮升力呈下降趋势,摩擦转矩和泄漏量相应增大;随着密封宽度增大,浮升力呈上升趋势,但偏心率不同,上升幅度不同;泄漏量在密封宽度L=0.035 m处基本稳定。螺旋角的增大导致了浮升力的下降,摩擦转矩和泄漏量呈上升趋势。在密封压差的作用下,摩擦转矩随着4种结构参数的增大而上升。槽数增大导致浮升力下降,与槽深的影响刚好相反。随着密封宽度的增加浮升力先降低后升高,与螺旋角的影响刚好相反。槽数和密封宽度的增加导致泄漏量快速下降至稳定值。提出优化的结构参数如下:槽数n=12~18,密封宽度L=0.03~0.045 m,螺旋角a=40°~50°。  相似文献   

20.
螺旋槽干气密封微尺度气膜的温度场计算   总被引:1,自引:1,他引:0       下载免费PDF全文
丁雪兴  刘勇  张伟政  张英杰 《化工学报》2014,65(4):1353-1358
螺旋槽干气密封在高压、高速旋转时内部会产生一定量的热,导致密封环发生热弹变形,从而使运行不稳定和泄漏量增大。首先在速度滑移边界条件下,求出气膜压力和气膜速度;然后推导出气膜的能量微分方程,同时引入温度阶跃边界条件,进而利用气膜的压力、速度和能量方程,通过Matlab软件数值计算得到气膜的温度分布。结果表明,随着气体从外径流入内径,气膜速度的分布规律是先降低后升高,槽根部周围速度较低;随着气体从外径流入内径,气膜温度的分布规律是先升高后降低,槽根部周围温度较高;考虑温度阶跃下的温度分布与不考虑温度阶跃下的温度分布相差较小,可以不予考虑温度阶跃对干气密封气膜温度的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号