首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
为分析腹板参数对槽形梁结构噪声的影响,基于车辆-轨道耦合动力学理论,建立轨道交通槽形梁的有限元模型和边界元模型,采用有限元法和间接边界元法计算分析列车荷载作用下的槽形梁结构噪声特性,最后又分析腹板厚度和腹板半径对槽形梁结构噪声的影响。分析结果表明:轨道交通槽形梁结构噪声的峰值频率在31.5 Hz至80 Hz之间;增加腹板厚度会增大近场点的最大线性声压级,但对远场点的噪声具有一定的降噪作用;增大腹板半径对近场点的结构噪声影响较小,但却会增大远场点的结构噪声。这可为轨道交通槽形梁的结构声学优化提供一定的理论参考。  相似文献   

2.
轨道交通槽形梁结构在列车动载作用下会辐射低频噪声,这种低频噪声对人体健康危害很大。以轨道交通30 m的简支槽形梁为研究对象,基于车辆-轨道耦合动力学模型,利用有限元法计算了列车荷载作用下槽形梁的振动响应,再利用声传递向量法分析了槽形梁结构辐射噪声及其特性,最后对槽形梁结构各板件的噪声辐射贡献进行了研究。分析结果表明:轨道交通槽形梁底板的垂向振动速度振级和腹板的横向振动速度振级的峰值频率均为63 Hz,且底板的垂向振动响应是最大的。槽形梁结构噪声的线性声压级的峰值频率在63 Hz附近,且当频率为63 Hz时,槽形梁结构噪声的辐射范围最广,衰减得最慢。槽形梁结构噪声辐射的主要区域在梁体的正上方和梁体的正下方,且梁体正上方的结构噪声要大于正下方。槽形梁底板对结构噪声的贡献量是最大的,其次是腹板,翼缘板对槽形梁结构噪声的影响很小。  相似文献   

3.
为了探讨列车通过轨道交通高架槽形梁时诱发的结构噪声,以某拟建30 m轨道交通槽形梁为研究对象,建立车桥耦合系统振动分析模型以及槽形梁结构声辐射有限元/边界元模型。采用多体动力学软件Simpack建立列车的空间动力学模型,采用有限元软件Ansys建立槽形梁有限元模型,基于Simpack和Ansys相结合的联合仿真方法,获取轮轨激振力。在计算列车荷载作用下槽形梁结构振动响应的基础上,采用有限元-间接边界元耦合声学分析法,探讨底板厚度以及腹板高度对槽形梁结构噪声的影响。研究结果表明:底板厚度的增加可以降低槽形梁梁体正下方的结构噪声,但并非越厚越好,底板厚度对结构远声场有一定程度的影响,但降噪效果不明显;腹板高度的变化使槽形梁结构噪声辐射衰减方向有所改变,桥梁腹板两侧噪声辐射衰减速度较快;桥梁底板正上方的结构辐射噪声最强区域有缩小趋势;分析结果可为轨道交通槽形梁结构减振降噪优化设计提供一定的理论参考依据。  相似文献   

4.
轨道交通槽形梁结构在列车动载作用下会辐射低频噪声,这种低频噪声对人体健康危害很大。以轨道交通30 m简支槽形梁为研究对象,基于车桥耦合分析模型,利用有限元法和边界元法计算槽形梁结构辐射声功率。将响应面法与辐射声功率计算相结合,建立了以槽形梁辐射结构噪声在分析频率范围内的总声功率级为目标及以槽形梁质量为约束的声学优化模型,再利用序列二次规划法进行求解,最终找出了槽形梁结构声学最优的截面尺寸。优化后槽形梁底板厚度为0. 34 m,腹板厚度为0. 22 m。计算结果表明,利用响应面法可以有效的对槽形梁进行声学优化,而且优化后的降噪效果还是比较显著的。  相似文献   

5.
箱型梁结构在列车的动力作用下产生振动并引发低频噪声,这种低频噪声对人体健康危害很大。以单跨32 m轨道交通箱型梁为研究对象,分别建立腹板无孔与腹板开孔两种工况下的三维实体有限元模型;在计算列车荷载作用下箱型梁振动响应的基础上,采用有限元-边界元耦合声学求解方法,分析计算腹板开孔的箱型梁结构噪声辐射特性。结果表明:腹板开孔使箱型梁跨中顶板和底板的垂向振动均有所降低;腹板开孔使箱型梁结构噪声衰减方向发生改变,在梁体下方及远场点有较好的降噪效果,分析结果可为城市轨道交通箱型梁的结构减振降噪设计提供一定的理论参考依据。  相似文献   

6.
基于室内外温差均衡、通风、排水等因素,往往会在铁路简支箱梁顶板、底板、腹板开设数量和尺寸不一的孔洞。现场实测表明,腔内噪声会通过孔洞泄露出去,增大腔外噪声。基于以上原因,有必要研究开孔对箱梁辐射噪声的影响。研究结论表明:箱梁板的振动频率主要集中在40 Hz至250 Hz范围内;底板侧的噪声主要由底板振动而产生;腹板侧的噪声测点主要由腹板和翼缘板的振动产生。比较分析实测值、不开孔模型理论值、开孔模型理论值后发现,开孔模型测点理论值均比不开孔模型理论值大,更接近于实测值。开孔对结构近场噪声影响不可忽略,理论计算时采用开孔计算模型能更好模拟箱梁结构噪声。  相似文献   

7.
基于有限元统计能量(FE-SEA)混合法对列车作用下的城市轨道交通U型梁的振动及结构噪声进行了预测分析。结果发现:U型梁局部振动的加速度级明显大于其整体振动对应的加速度;其中,在低频区域翼板振动响应最大,高频区域则底板振动最大;U型梁各部分结构噪声声压级规律为:底板腹板翼板,其趋势与激励的幅值趋势基本一致,其中底板在各频段均起主要控制作用,因此U型梁主要的减振降噪频段应是作用在其上的轮轨力的优势频段,底板应为主要减振降噪对象;同时随着列车速度的增加,U型梁振动加速度与结构噪声在各频率都会增大,且其对振动加速度的影响要大于对声压级的影响,对高频区域影响大于低频区域;而U型梁的振动功率级损失不随速度的改变而变化,桥下场点及远场点的总声压级呈线性增大。  相似文献   

8.
韩江龙  吴定俊  李奇 《工程力学》2013,30(2):190-195,202
该文用模态叠加法对城市轨道交通槽型梁进行车-轨-桥耦合动力计算,借助SYSNOISE求出模态声传递向量MATVs,进而用MATVs和梁的模态坐标响应计算桥梁的结构噪声。噪声计算值与实测值在频率分布和幅值上有较高的一致性,证明振动与噪声数值模型的可靠性。槽型梁结构噪声的线性声压级峰值频率为40Hz~80Hz,数值计算表明:动力分析只需考虑轮轨竖向接触即可满足结构噪声计算要求;考虑200Hz以下的声源激励和100Hz以下的结构模态作为边界条件可达到较好的噪声计算精度;调节轨下胶垫的刚度能有效减小结构振动,降低结构噪声2dB~3dB;声压级和车速有强线性关系。  相似文献   

9.
城市轨道交通成为人们出行的主要交通方式,轨道交通噪声产生的问题有待解决。文章以某城市地铁线路为研究对象,现场实测列车经过时产生的振动和噪声,主要分析U型梁振动产生的低频结构辐射噪声并建立声学预测模型。在分析实测数据同时对减振降噪措施效果进行了分析,由于结构辐射噪声主要在低频段,故振动分析频段为 4~200Hz,结构辐射噪声分析频段为20~200 Hz。结果表明,梁体振动与辐射噪声有很强的关联性,变化规律基本一致;安装钢轨波导消振吸声器前后,底板振级和辐射声压级都降低5~8 dB左右,有明显减振降噪作用;U型梁结构振动的辐射噪声在梁体周围的传播有很强的指向性,梁体正上方与正下方声压级最大,但腹板外侧声压级相对较小。  相似文献   

10.
考虑车辆、轨道和桥梁动力相互作用,用模态叠加法分析了槽型梁的结构噪声和不同构件的声压贡献量.分析表明:槽型梁底板对远场区结构噪声的影响大于腹板,增加底板厚度的降噪效果好于增加腹板厚度;设置横肋也能有效降低远场区和梁底结构噪声,横肋全跨布置比仅在跨中加密布置效果好;车速高时增设横肋的降噪效果好于车速低时.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号