首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
采用溶液-水悬浮-蒸馏法,分别以丁腈橡胶(NBR-26)、氟橡胶2311和2603为黏结剂,2,6-二氨基-3,5-二硝基吡啶-1-氧化物(ANPyO)和RDX为主体炸药制备了3种高聚物黏结炸药(PBX)。用激光粒径分析、扫描电镜、差示扫描量热法、热重分析法、机械感度等对3种PBX的结构和性能进行了表征。结果表明,PBX的平均粒径比较接近,约为50μm,比表面积在0.5m2/g左右;熔融吸热峰位于206.5℃附近,分解放热峰在231~235℃之间;撞击感度和摩擦感度分别为44%和32%。3种PBX的热稳定性低于ANPyO,机械感度低于RDX。  相似文献   

2.
借助二(2,2,2-三硝基乙基)硝胺(BTNNA)的恒容标准燃烧热(Qc),不同加热速率(β)非等温DSC曲线离开基线的初始温度(T0)、onest温度(Te)、最大峰顶温度,由Kissinger法和Ozawa法所得的热分解反应活化能(EKand Eo)和指前因子(AK),从方程lnβi=ln[A0/be0(or p0)G(α)]+be0(or p0)Te(or p)i所得的be0(or p0)值,从方程lnβi=ln[A0/(αe0(orp0)+1)G(α)]+lnTe(or p)i所得的ae0(or p0)值,从方程ln(βi/Tei-T0i)=ln[A0/G(α)]+bTei所得的b值,从方程ln(βi/Tei-T0i)=ln[A0/G(α)[+alnTei所得的a值,估算的比热容(cp)、密度(ρ)、热导率(λ)和分解热(Qd,取爆热之半)数据,Zhang-Hu-Xie-Li公式,Hu-Yang-Liang-Xie公式,基于Berthelot方程和Harcourt-Esson方程计算热爆炸临界温度的公式,Smith方程,Friedman公式,Bruckman-Guillet公式,热力学公式和Wang-Du公式,计算了由理想燃烧反应和和Hess定律得到的BTNNA的恒容标准燃烧能ΔcU(BTNNA,s,298.15K)和标准生成焓ΔfHθm(BTNNA,s,298.15K),β0时的T0、Te和Tp值(T00、Te0和Tp0),热爆炸临界温度(Tbe和Tbp),绝热至爆时间(tTIad),撞击感度50%落高(H50),热点起爆临界温度(Tcr),被310K环境包围的半厚和半径为一米的无限大平板、无限长圆柱和球形BTNNA的热感度概率密度函数S(T),相应于S(T)vs T关系曲线最大值的峰温(TS(T)max),安全度(SD),临界热爆炸环境温度(Tacr)和热爆炸概率(PTE)。得到了评价BTNNA热安全性的下列结果:(1)ΔcU(BTNNA,s,298.15K)=-2184.57kJ.mol-1和ΔfHθm(BTNNA,s,298.15K)=(14.08±0.53)kJ.mol-1;(2)T00=356.89K,TSADT=Te0=374.75K,Tp0=430.04K,Tbe0=387.11K,Tbp0=439.20K;(3)当EK=128040J.mol-1,AK=1012.865s-1,cp=1.21J.g-1.K-1,Qd=2725.88J.g-1,T0=Te0=430.04K,T=Tb=442.68K,f(α)=(1-α)n,a=10-3cm,ρ=1.97g.cm-3,t-t0=10-4s,Troom=293.15K,λ=31.4×10-4J.cm-1.s-1时,H50=12.50cm,tTIad=1.73(n=0)s,1.75(n=2)s,Tcr,hot,spot=446.41℃,对无限大平板,TS(T)max=303.5K,Tacr=298.77K,SD=14.57%,PTE=85.43%,对无限长圆柱,TS(T)max=308.5K,Tacr=303.82K,SD=25.57%,PTE=74.43%,对球,TS(T)max=312.0K,Tacr=307.02K,SD=33.67%,PTE=66.33%.运用HF/6-31+G*计算获得BT-NNA的优化构型,NMR化学位移对前沿轨道能量、原子净电荷及稳定化能进行了分析。  相似文献   

3.
在升温速率分别为2.5、5、10、20 K/min条件下对2,6-二氨基-3,5-二硝基吡啶-1-氧化物(ANPyO)及其黏结炸药进行了TG实验,根据实验结果讨论了ANPyO及其两种橡胶黏结炸药的热分解过程,用非线性等转化率积分法和Ozawa法计算了ANPyO及其两种黏结炸药的热分解动力学参数和机理函数.结果表明,ANPyO及其黏结炸药在210℃以下均未出现明显的质量损失过程.ANPyO及其黏结炸药的热分解机理均属于n=1的随机成核和随后生长.ANPyO热分解的活化能、指前因子和机理函数分别为198.22 kJ/mol,2.743×1017 s-1,f(a)=(1-α),热分解动力学方程为:(dα)/(dt)=kf(α)=A·e(-E)/(RT)·f(α)=2.743×1017×(1-α)exp-(2.384×104)/(T).  相似文献   

4.
改进了含能化合物N~1-(2,2,2-三硝基乙基)-1,5-二氨基四唑(TTD)的合成工艺。以二氨基胍盐酸盐为原料,经重氮化反应合成出1,5-二氨基四唑(DAT),然后与2,2,2-三硝基乙醇(TNE)发生曼尼希缩合反应得到TTD,并采用红外光谱、核磁共振、元素分析等鉴定了其结构;优化了缩合反应条件,确定适宜反应条件为:选用物料DAT与TNE的质量比1:2.0,反应介质水/乙醇的质量比1:0.3,温度30℃,时间1 h。利用差示扫描量热法(DSC)、热失重法(TG)对TTD进行了热分解研究,并结合Kissinger法和Ozawa法及相关方程计算了TTD的热动力学参数、热爆炸临界温度,得到TTD的活化能和指前因子分别为:73.65 kJ·mol~(-1),21.15 s~(-1);并计算得到热爆炸临界温度为401.34 K。  相似文献   

5.
以二氯乙二肟、叠氮化钠、盐酸羟胺和三氯化钛等为原料,合成了1,1′-二羟基-5,5′-联四唑钛盐(Ti-BHT)燃烧催化剂。利用差示扫描量热法和热重法研究了不同升温速率下Ti-BHT金属盐的热分解过程,获得了热分解动力学参数和热分解机理函数;用Ozawa法和Kissinger法计算了热分解动力学参数,进而计算出自加速分解温度、热爆炸临界温度和热力学参数;用微量热法测定了Ti-BHT的比热容。结果表明,Ti-BHT的活化能Ek为143.49kJ/mol,指前因子Ak为1.23×10~(13)s~(-1),热分解属于n=3的随机成核和随后生长机理;自加速分解温度TSADT为466.21K,临界爆炸温度Tbpo为505.42K,热分解活化自由能ΔG~≠为142.74kJ/mol,活化焓ΔH~≠为139.41kJ/mol,活化熵ΔS~≠为-6.78J/(mol·K);Ti-BHT在298.15K的标准摩尔比热容为800.51J/(mol·K);摩擦爆炸概率为20%,特性落高大于125.9cm,说明其机械感度较低,具有较好的安全性能。  相似文献   

6.
利用C500量热仪研究了3,3′-二硝氨基-4,4′-氧化偶氮呋咱羟胺盐(HNAF)的热分解特性,根据Kissinger和Ozawa方程计算了热分解的动力学参数,同时计算了热分解的热力学参数;采用Micro-DSCⅢ量热仪测定了3,3′-二硝氨基-4,4′-氧化偶氮呋咱羟胺盐的比热容,计算获得了3,3′-二硝氨基-4,4′-氧化偶氮呋咱羟胺盐热安全评价参数。结果表明,HNAF的活化能(E)和指前因子(A)分别为205.26 kJ/mol和1020.32 s-1;活化熵、活化焓和活化吉布斯自由能分别为140.76 J/(mol·K)、201.56 kJ/mol和200.39 kJ/mol。比热容方程与298.15 K时的摩尔比热容分别为C p=-1.560+0.016 T-2.263×10-5 T 2(J/(g·K))和446.028 J/(mol·K)。自加速分解温度、绝热分解温升、热爆炸临界温度分别为444.44 K、2382.89 K、452.86 K,绝热至爆时间为12.46~12.54 s。  相似文献   

7.
为解决2,6-二氨基-3,5-二硝基吡啶-1-氧化物(ANPyO)难以用常规方法精制的难题,以铜盐、二甲基亚砜、硫酸和水为原料,通过ANPyO铜配合物的合成及解络合过程除去杂质2,6-二氨基-3,5-二硝基吡啶(ANPy),得到精制的ANPyO,通过对固、液废弃物的再利用,获得了精制ANPyO的新方法。用红外、核磁、元素分析、扫描电镜、差示扫描量热等对中间体及产物进行了表征。结果表明,通过该方法精制ANPyO的收率大于89%,纯度大于99%,有机溶剂需求量少。  相似文献   

8.
以5-氨基四唑为原料,经氧化、还原及中和反应合成了5,5′-肼基双四唑二羟胺盐(HBT-HA),并利用红外光谱、核磁共振、元素分析对产物进行了表征。利用差示扫描量热法(DSC)、热失重法(TG)对HBT-HA进行了热分解研究,并结合Kissinger法和Ozawa法及相关方程计算了HBT-HA的热动力学参数、热爆炸临界温度;基于实测密度(ρ=1.519g/cm3)和预估生成焓(ΔHf=1877.3kJ/mol),利用Explo5 (V6.04)软件预估了HBT-HA的爆速、爆压和爆热,采用BAM撞击感度测试仪测试了HBT-HA的感度;优化了HBT-HA的合成工艺,并测试了HBT-HA与双基推进剂的相容性。结果表明,中和反应较佳反应条件为:以水为反应溶剂,反应温度为10~15℃,n(HBT)∶n(NH2OH)=1∶5时反应1h; HBT-HA的热分解峰温为241.7℃,活化能、指前因子、热爆炸临界温度分别为271.18kJ/mol、63.90s-1、513.15K;预估的爆速、爆压和爆热分别为9118...  相似文献   

9.
通过差示扫描量热法(DSC)研究以聚氨酯弹性体、黑索金、硝化纤维素以及太根等组成的聚氨酯发射药的热分解性能,将DSC数据结合Kissinger方程和Ozawa方程计算其活化能、指前因子和机理函数方程。聚氨酯发射药(含太根)活化能E和指前因子A约为140 kJ/mol和1.45×10~(14);聚氨酯发射药(不含太根)活化能E和指前因子A约为128 kJ/mol和9.73×10~(13)。聚氨酯发射药热爆炸临界温度T_b约为490 K,自加速分解温度约为475 K。  相似文献   

10.
柔性UPR树脂/粉煤灰非等温固化动力学   总被引:1,自引:0,他引:1  
王世兵  张奇志 《广州化工》2010,38(8):131-133,151
用差示扫描量热法(DSC)研究了柔性不饱和聚酯树脂/粉煤灰体系的非等温固化过程,利用T-β外推法确定了体系的固化工艺温度:凝胶温度257.625K、固化温度374.275K、后处理温度406.565K。用Flynn-Wall-Ozawa法和Friedman-Reich-Levi法获得了柔性UPR固化反应表观活化能为Ea=83.94kJ·mol-1。由ASTME698-79标准方法求得指前因子,lnA=25.27;结合Crane方程分析知,复合体系的固化反应接近于一级反应。最终建立了复合体系固化反应动力学方程为ln(ddαt)=25.27-10096.22T+ln(1-α)0.9126。  相似文献   

11.
一种判定RDX热分解机理函数与热安全性的方法   总被引:3,自引:0,他引:3  
将DSC、TG数据与Malek法相结合研究了RDX的热分解,得到外延起始温度Le0、拐点温度T、峰顶温度Tp、分解终止温度Tf、分解焓变ΔH、表观活化能E、指前因子A、反应级数n、热爆炸临界温度Tb和自加速分解温度TSADT;利用TG热分析得到RDX热分解的起始分解温度T0、质量损失Δm%、最大质量损失速率及对应的温度...  相似文献   

12.
以二氯乙二肟、二甲基甲酰胺、叠氮化钠、盐酸羟胺和硝酸铅等为原料,合成了1,1-二羟基-5,5′-联四唑羟胺铅盐(Pb-TKX-50)燃烧催化剂,研究了Pb-TKX-50对推进剂机械感度的影响以及与推进剂组分的相容性;利用差示扫描量热法和热重法研究了Pb-TKX-50在不同升温速率下的热分解过程,计算其表观活化能(E K和E O)和指前因子(A K),得到其热分解动力学参数、热分解机理函数、热爆炸温度和热力学性质。结果表明,在推进剂配方中加入Pb-TKX-50燃烧催化剂,可以改善其撞击感度和摩擦感度,且与推进剂组分的相容性良好;Pb-TKX-50的主峰分解温度相对于TKX-50的主峰分解温度显著提高,说明其热稳定性显著提高。Ozawa法和Kissinger法得到Pb-TKX-50的表观活化能分别为181.45 kJ/mol和182.49 kJ/mol,且热分解过程符合Avrami-Erofeev方程;Pb-TKX-50的自加速分解温度和爆炸临界温度分别为500.53 K和544.33 K,表明其热稳定性良好;Pb-TKX-50催化剂的热分解自由能(ΔG^≠)为158.87 kJ/mol,活化焓(ΔH^≠)为187.03 kJ/mol,活化熵(ΔS≠)为52.98 kJ/mol。  相似文献   

13.
采用动态真空安定性试验(DVST)法,在真空密闭条件下对CL-20的热分解过程进行了研究.结果表明,在90~140℃,CL-20非等温阶段的热分解反应机理函数为Avrami-Erofeev方程,表观活化能Ea为165.3kJ·mol-1,指前因子In(A/s-1)为40.20.等温阶段热分解反应的机理函数随试验温度的不...  相似文献   

14.
用DSC-TG研究了TATB的热分解过程。根据升温速率分别为5、10、15、20K/min的DSC和TG-DTG曲线计算了分解反应的活化能(E)、指前因子(A)和120℃时的速率常数(k120),并计算了升温速率为5K/min时,TATB分解峰值温度时的分解反应活化焓、活化熵和活化自由能,用小容量测试法研究了TATB在1-乙基-3-甲基咪唑醋酸盐/二甲基亚砜([Emim]Ac/DMSO)溶剂中的热爆炸特性。结果表明,采用Kissinger法和Ozawa法计算得到TATB分解反应的活化能分别为212.1和212.0kJ/mol,采用Rogers公式和Arrhenius公式计算得到A和k120值分别为5.87×1016s-1和3.87×10-12s-1;升温速率为5K/min条件下,TATB分解峰值温度时的分解反应活化焓、活化熵和活化自由能分别为206kJ/mol、61.42J/(K·mol)和167.39kJ/mol,TATB粉末的临界爆炸温度为336.6℃;TATB在[Emim]Ac/DMSO溶剂中不爆炸。  相似文献   

15.
为了研究黏结剂对CL-20/FOX-7基PBX性能的影响,分别以Estane、EPDM、ACM、EVA为黏结剂,采用水悬浮法制备了含有不同黏结剂成分的CL-20/FOX-7基高聚物黏结炸药(PBX);采用场发射扫描电子显微镜(SEM)、激光粒度分析仪、X射线衍射仪(XRD)、差示扫描量热仪(DSC)对样品结构、形貌和热分解特性进行了表征;使用撞击感度测试仪、摩擦感度测试仪和小型烤燃实验装置测试了不同样品的机械感度和烤燃特性。结果表明,以EVA为黏结剂制备的CL-20/FOX-7基PBX造型粉颗粒密实,表面光滑且没有脱粘外漏现象,包覆粘结效果最好;以EVA为黏结剂制备的PBX活化能较细化CL-20提高了87.75 kJ/mol,较FOX-7原料提高了42.52 kJ/mol,说明使用EVA的PBX热稳定性较原料有一定提升;同时该PBX样品特性落高(H 50)较细化CL-20提高25.6 cm,摩擦感度爆炸概率降低52%,较使用Estane、EPDM和ACM的PBX样品机械感度更低;使用EVA的PBX药柱在升温速率为6K/min的慢速烤燃条件下,烤燃反应等级为燃烧,说明该配方能够达到烤燃安全试验要求,安全性能较好。  相似文献   

16.
LLM-105基PBX炸药的热分解反应动力学   总被引:3,自引:0,他引:3  
通过布氏压力计法获得了普通的和纳米化的LLM-105基PBX炸药在不同温度条件下热分解放气量随时间的变化曲线。基于Arrhenius公式计算了两种PBX炸药分解深度为0.1%时的表观活化能。采用TG-DSC研究了两种LLM-105基PBX炸药的非等温热分解反应动力学。结果表明,由Arrhenius公式得到的普通和纳米化的LLM-105基PBX炸药在分解深度为0.1%时的表观活化能分别为74.67和138.09kJ/mol。利用Kissinger法计算获得两种LLM-105基PBX炸药在最大分解速率(分解深度约50%)下的表观活化能分别为389.26和215.73kJ/mol,与Ozawa法计算结果相吻合。升温速率趋于零时的特征分解峰值温度分别为606.94和586.48K,热爆炸临界温度分别为615.0和600.4K。相对于普通LLM-105基PBX炸药,纳米化LLM-105基PBX炸药热分解具有更高的反应活性,热感度也有所提高。  相似文献   

17.
丁立  张礼敬  生迎夏  颜世华 《化工学报》2009,60(4):1062-1067
引言 有要过氧化物的分子结构中含有双氧键,具有不稳定、易分解的特性,在较低的温度下就能发生热分解,放出大量的热,加速系统升温分解,从而发生剧烈反应,甚至导致热爆炸.  相似文献   

18.
在程序升温条件下,用DSC研究了2,5,7,9-四硝基-2,5,7,9-四氮杂双环[4,3,0]壬酮-8的放热分解反应动力学参数.表明该反应的微分形式的动力学模式函数、表观活化能(Ea)和指前因子(A)分别为3(1-α)[-ln(1-α)](2)/(3), 204.7 kJ/mol 和 1020.89 s-1.该化合物的热爆炸临界温度为188.81℃.反应的活化熵(ΔS≠)、活化焓(ΔH≠)和活化自由能(ΔG≠)分别为141.6 J/(mol*K), 200.9 kJ/mol 和136.8 kJ/mol.  相似文献   

19.
在程序升温条件下,用DSC研究了1,1′-二甲基-5,5′-偶氮四唑一水合物的放热分解反应动力学参数.表明该反应的微分形式的经验动力学模式函数,表观活化能(Ea)和指前因子(A)分别为(1-α)-1.53, 114.1 kJ/mol和108.72 s-1.该化合物的热爆炸临界温度为215.45 ℃.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号