首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper studies the resource allocation for a multi-user two-way amplify-and-forward (AF) relay network over orthogonal frequency-division multiplexing (OFDM) technology,where all users communicate with their pre-assigned partners.Using convex optimization techniques,an optimal solution tominimize the total transmit power while satisfy each user-pair’s data rate requirements is proposed.We divide the resource allocation problem into two subproblems:(1) power optimization within user-pair and relay in each subcarrier.(2) optimal subcarrier allocation and sum power assignment among N parallel OFDM subcarriers.Closed-form expressions of the power among user-pair and relay can be obtained in subproblem (1),and so the proposed algorithm decreases the variable dimensionality of the objective function to reduce the complexity of this optimization problem.To solve it,a three-step suboptimal approach is proposed to assign the resources to user-pairs:Firstly,decompose each user-pair into two sub user-pairs which have one-way and two-way relaying transmission modes.Secondly,allocate the subcarriers to the new mode user-pairs and assign the transmit power to each carrier.Thirdly,distribute the assigned power to three nodes allocated in the subcarrier.Simulation results demonstrate the significant power is saved with the proposed solutions,as compared to a fixed subcarrier allocation.  相似文献   

2.
在原有动态资源分配算法基础上,提出了一种基于用户速率需求的动态资源分配算法。该算法在满足用户数据速率需求和服务质量要求(QoS)的前提下,以用户公平性为原则,分步执行子载波和比特分配来降低系统总的发射功率。首先,通过比较不同子载波对用户速率的影响,引入速率影响因子,对子载波进行分配;然后为每个用户子载波分配比特,并根据用户速率需求进行比特调整。为了进一步降低系统的复杂度,提出了一种通过子载波分组来完成子载波比特分配的方法。仿真结果表明,该算法能够降低系统功耗、误码率和系统复杂度。  相似文献   

3.
In this paper, we have proposed a multi-relay selection and power allocation scheme for two-way relay network which aims to maximize the sum-rate of two-way relay system. First, to prolong network lifetime, a multi-relay selection strategy is proposed in which both channel state information (CSI) and remaining energy (RE) are considered. Next, a multi-relay power allocation algorithm based on convex optimization (MRPA-CO) is presented. To reduce the computational complexity, it can be divided into two steps: terminal nodes power allocation (TNPA) and relay nodes power allocation (RNPA). Simulation results indicate that the proposed relay selection strategy can significantly prolong network lifetime compared to other relay selection strategies which consider CSI only, and the MRPA-CO algorithm has great advantage over equal power allocation (EPA) on sum-rate in two-way relay network.  相似文献   

4.
提出了多中继无线通信系统的模型,研究其源节点和各中继节点间功率分配对系统容量的影响,在总功率一定的情况下,探讨了以容量最大化为准则的功率分配算法。对采用非再生协作中继方式的多中继协作通信系统进行了容量分析,并提出了一种低复杂度的最优功率分配算法(Optimum Power Allocation,OPA)。仿真结果表明,该算法相对于平均功率分配算法(Average Power Allocation,APA),系统容量得到了显著提高,在信道条件差的情况下,性能提高更明显。  相似文献   

5.
For conventional subcarrier pairing schemes in cooperative orthogonal frequency division multiplexing amplify and forward multi-relay networks, to avoid interference, each subcarrier pair (SP) is assigned to only one relay. Over a specific subcarrier, the destination receives signals transmitted from only one relay. In our subcarrier pairing scheme, we assign each SP to all the relays. Thus, over a specific subcarrier, the destination receives signals transmitted from all the relays. Since it is assumed that there exists the direct link from the source to the destination, we assume that the source also transmits signals during the second time slot for the direct transmission mode. We propose an enhanced joint subcarrier pairing and power allocation optimization scheme which maximizes the transmission rate subject to total network power constraint. The problem is simplified and solved by using dual method. It is shown from simulation results that our proposed scheme outperforms the other schemes.  相似文献   

6.
针对多用户正交频分复用(OFDM)系统自适应资源分配的问题,提出了一种新的自适应子载波分配方案。子载波分配中首先通过松弛用户速率比例约束条件确定每个用户的子载波数量,然后对总功率在所有子载波间均等分配的前提下,按照最小比例速率用户优先选择子载波的方式实现子载波的分配;在功率分配中提出了一种基于人工蜂群算法和模拟退火算法(ABC-SA)相结合的新功率分配方案,并且通过ABC-SA算法的全局搜索实现了在所有用户之间的功率寻优,同时利用等功率的分配方式在每个用户下进行子载波间的功率分配,最终实现系统容量的最大化。仿真结果表明,与其他方案相比,所提方案在兼顾用户公平性的同时还能有效地提高系统的吞吐量,进而证明了所提方案的有效性。  相似文献   

7.
In this paper, we investigate the quality‐of‐service (QoS) driven subcarrier pairing and power allocation for two‐hop amplify‐and‐forward OFDM relay systems. By integrating the concept of effective capacity, our goal is to maximize the system throughput subject to a given delay QoS constraint. We propose a jointly optimal subcarrier pairing and power allocation scheme, which can be implemented with two separate steps. First, pair the subcarriers over the source‐relay channel and relay‐destination channel by the descending order of the subcarriers’ channel gains. Second, by making use of the derived equivalent end‐to‐end channel gains of the subcarrier pairs, optimally allocate power over the subcarrier pairs, and then optimally partition the power of the subcarrier pairs between the source and the relay. The simulation results show that our proposed scheme can efficiently provide different levels of delay QoS guarantees, even if under stringent delay QoS constraints. The simulation results also verify that our proposed scheme shows significant superiorities over the other existing schemes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
The increasing use of relays in wireless communication systems is a driving force to explore innovative techniques that can improve the quality of service as well as enhance the coverage in wireless systems. In this article, we propose a two-step approach for subcarrier allocation and power allocation in the downlink of an OFDM-based amplify-and forward relaying system. In the first step, the total power is allocated to mobile users and relays based on the optimum power ratio derived for the single-relay system. In the second step, subcarriers are assigned to the users based on cooperative subcarrier allocation algorithms. Compared to the non-cooperative algorithm with flat power allocation, the total throughput is shown to improve by applying the two-step cooperative subcarrier allocation and power allocation algorithms.  相似文献   

9.
This paper investigates the subcarrier and power allocation problems of multi-user space-time block coded OFDM based cellular systems. Based on the tradeoff between the number of assigned subcarriers and the amount of allocated power for users, a less complexity algorithm that separates subcarrier allocation and power allocation is proposed. Simulation results show that the proposed resource allocation algorithm can improve the capacity significantly compared with static FDMA fixed allocation algorithm and the MIMO-OFDMA scheme, and the more important thing is that it can make the capacity be distributed more fairly, very close to the ideal rate constraints, among users than the scheme which maximizes the system capacity only.  相似文献   

10.
In order to improve the efficiency and fairness of radio resource utilization,a scheme of dynamic cooperative subcarrier and power allocation based on Nash bargaining solution(NBS-DCSPA) is proposed in the uplink of a three-node symmetric cooperative orthogonal frequency division multiple access(OFDMA) system.In the proposed NBS-DCSPA scheme,resource allocation problem is formulated as a two-person subcarrier and power allocation bargaining game(SPABG) to maximize the system utility,under the constraints of each user’s maximal power and minimal rate,while considering the fairness between the two users.Firstly,the equivalent direct channel gain of the relay link is introduced to decide the transmission mode of each subcarrier.Then,all subcarriers can be dynamically allocated to the two users in terms of their selected transmission mode.After that,the adaptive power allocation scheme combined with dynamic subcarrier allocation is optimized according to NBS.Finally,computer simulation is conducted to show the efficiency and fairness performance of the proposed NBS-DCSPA scheme.  相似文献   

11.
多天线双向中继系统中的中继处理与资源分配策略   总被引:2,自引:0,他引:2  
该文在多天线放大转发双向中继系统中,根据最小和均方误差(MSMSE)准则,以较小的复杂度得到了MSE最优的中继处理矩阵的闭合表达式。为综合利用空域和频域分集,探讨了OFDM双向中继系统的资源分配策略,提出了实现复杂度低的分层子载波配对策略和功率优化分配策略。仿真结果显示,所设计的中继处理策略在系统和速率和误码率性能上均明显优于其他双向中继策略,且性能随着中继天线数的增加而提升;结合功率分配的分层子载波配对策略能明显提升系统和速率,性能接近最优策略。  相似文献   

12.
针对无线OFDM多播系统,该文提出一种基于子载波合并的多播资源调度算法。该算法通过提前将子载波分组,避免了不必要的子载波配对;自适应地选择子载波合并\非合并,在分集和复用两种模式中选取最优方案;同时根据子载波功率分配的特点,将其解耦为配对子载波集合内功率分配和集合间功率分配两个子问题,进一步优化了算法性能。仿真结果表明,与现有方案相比,所提方案能够在复杂度较低的情况下,较好地提升系统性能。  相似文献   

13.
An adaptive modulation scheme is presented for multiuser orthogonal frequency‐division multiplexing systems. The aim of the scheme is to minimize the total transmit power with a constraint on the transmission rate for users, assuming knowledge of the instantaneous channel gains for all users using a combined bit‐loading and subcarrier allocation algorithm. The subcarrier allocation algorithm identifies the appropriate assignment of subcarriers to the users, while the bit‐loading algorithm determines the number of bits given to each subcarrier. The proposed bit‐loading algorithm is derived from the geometric progression of the additional transmission power required by the subcarriers and the arithmetic‐geometric means inequality. This algorithm has a simple procedure and low computational complexity. A heuristic approach is also used for the subcarrier allocation algorithm, providing a trade‐off between complexity and performance. Numerical results demonstrate that the proposed algorithms provide comparable performance with existing algorithms with low computational cost.  相似文献   

14.
孙立悦  赵晓晖  虢明 《通信学报》2013,34(10):10-91
研究了功率受限情况下多中继协作通信网络的中继选择和功率优化问题。在AF网络中,提出了一种低复杂度中继选择与功率分配算法,其目标是在总功率一定的条件下使系统的中断概率最小。本算法对源节点和所有潜在中继节点进行功率分配,结合当前信噪比选择最优的中继集合,通过最速下降法求出使系统中断概率最低的功率分配因子。该算法不需要知道大量瞬时信道信息、不需要系统在等功率条件下进行中继选择,只需求得中继节点排列矩阵便可根据当前信噪比自适应获得最优中继节点集合。仿真结果表明,在相同条件下,该算法明显优于不同中继节点集合下几种算法的中断性能,并且与传统的SAF及AAF算法相比,有效降低了中断概率,提升了系统性能和功率效率。  相似文献   

15.
In this paper we apply frequency planning to the resource allocation of multi-cell and multi-user relay enhanced orthogonal frequency division multiplexing systems and propose a low-complexity algorithm taking into account of interference coordination, subcarrier and power allocation. We divide each cell into three sectors and allow different subcarrier set that can be used by the users of one sector. Such a method can help to increase the distance among users that use the same subcarriers of adjacent cells, which can reduce the impact of co-channel interference to a certain extent. Therefore, the original problem can be decoupled into three independent sub-problems by means of frequency dividing and adaptive power allocation at base station nodes which can reduce the computing complexity greatly. In the process of resource allocation for single sector, the relationship of transmission power between base station and relay node is used to transform the max-min problem into standard closed expression. With the help of dual decomposition approach, water-filling theorem and iterative power allocation algorithm, the suboptimal solution of the primal problem can be achieved finally. Simulation results illustrate that our proposed algorithm achieves almost the same performance as the optimal resource allocation and reduce the computing complexity greatly. In addition, the proposed algorithm can ensure the users fairness of different sectors.  相似文献   

16.
This paper studies optimal resource allocation for multiple network‐coded two‐way relay in orthogonal frequency division multiplexing systems. All the two‐way relay nodes adopt amplify‐and‐forward and operate with analog network coding protocol. A joint optimization problem considering power allocation, relay selection, and subcarrier pairing to maximize the sum capacity under individual power constraints at each transmitter or total network power constraint is first formulated. By applying dual method, we provide a unified optimization framework to solve this problem. With this framework, we further propose three low‐complexity suboptimal algorithms. The complexity of the proposed optimal resource allocation (ORA) algorithm and three suboptimal algorithms are analyzed, and it is shown that the complexity of ORA is only a polynomial function of the number of subcarriers and relay nodes under both individual and total power constraints. Simulation results demonstrate that the proposed ORA scheme yields substantial performance improvement over a baseline scheme, and suboptimal algorithms can achieve a trade‐off between performance and complexity. The results also indicate that with the same total network transmit power, the performance of ORA under total power constraint can outperform that under individual power constraints. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, we investigate the quality-of-service (QoS) driven subcarrier pairing and power allocation for two-hop decode-and-forward (DF) OFDM relay systems. By integrating the concept of effective capacity, our goal is to maximize the system throughput subject to a given delay-QoS constraint. Based on whether the destination can receive the signal transmitted by the source, we consider two scenarios, i.e. OFDM DF relay systems without diversity and OFDM DF relay systems with diversity, respectively. For OFDM DF relay systems without diversity, we demonstrate that the jointly optimal subcarrier pairing and power allocation can be implemented with two separate steps. For OFDM DF relay systems with diversity, we propose an iterative algorithm to achieve jointly optimal subcarrier pairing and power allocation. Furthermore, we find that the analytical results show different conclusions for the two types of OFDM relay systems. For OFDM relay systems without diversity, the optimal power allocation depend on not only the channel quality of subcarriers but also the delay QoS constraints, while the optimal subcarrier pairing just depends on the channel quality of subcarriers. For OFDM relay systems with diversity, both the optimal subcarrier pairing and power allocation depend on the channel quality of subcarriers and the delay QoS constraints. Simulation results show that our proposed scheme offers a superior performance over the existing schemes.  相似文献   

18.
On the basis of the amplify-and-forward relaying mode, a two-hop distributed cooperative multi-relay system is proposed combining with the space-time block coding OFDM (STBC-OFDM) technique. Taking the maximum end-to-end data rate as optimization criterion, the signal-to-noise ratio (SNR) of receiving terminal is deduced. On the basis of the water-filling theory, the optimal power allocation (OPA) is achieved for each subcarrier in each antenna and each relay node (RN) of the two-hop, to realize the resource optimization. Monte Carlo method is adopted in simulation. The simulation results show that compared with the uniform resource allocation scheme, the proposed OPA strategy can improve the system capacity. And the energy consumption of each transmission bit will be decreased, indicating the improvement of resource efficiency. In the scenario that the total power is limited, the system performance can be enhanced further by the distributed cooperative multi-relay through the diversity gain.  相似文献   

19.
针对OFDM中继信道,本文提出了一种基于选择性子载波的无线资源分配算法.文中通过选择信道条件最好的部分子载波进行平均功率分配,并对中继子载波进行优化分配.仿真结果表明,该算法不仅能够提高系统可获取的传输速率,而且可以降低运算复杂度.  相似文献   

20.
文凯  喻昉炜  周斌  张赛龙 《电视技术》2015,39(15):55-59
针对OFDMA中继网络的两跳特性,提出一种基于两跳匹配的中继网络联合资源分配算法。首先根据中继网络的两跳性建立两跳速率匹配模型,然后利用对偶分解理论将中继网络资源分配的主问题分解为:中继选择、子载波分配和功率分配三个主要的子问题并进行联合优化,同时基于中继网络两跳性在子载波分配的过程中考虑两跳子载波配对,以逼近系统最优解。最后为了保证算法的公平性,考虑子载波分配因子约束以优化子载波分配。仿真结果表明:所提算法将中继选择、两跳子载波配对与功率分配联合优化以进一步提升系统吞吐量,同时引入子载波分配因子约束,保证了算法的公平性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号