首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
为了对地铁引起的站台邻近建筑楼层振动进行预测,提出并验证半经验半数值的振动预测方法,即运用实测经验法确定振源强度,有限元法分析建筑结构振动传递函数,将源强与传递函数相结合对建筑结构振动响应进行预测。利用半经验半数值的振动预测方法,对某地铁站台及其邻近建筑进行环境振动预测分析,得到地铁运行引起站台邻近建筑室内振动加速度级随楼层变化规律及其频谱特性。结果表明,半经验半数值的振动预测方法可行;地铁引起的站台邻近建筑内,随着楼层升高,低频振动受结构固有频率影响逐步放大,高频振动受阻尼影响能量衰减逐步减小,总振级随楼层增高呈先减小后增大趋势。该结果对地铁运行引起的站台邻近建筑室内环境振动预测及隔振设计具有实际意义。  相似文献   

2.
冯青松  余超  唐柏赞  周涛 《振动与冲击》2023,(9):304-311+321
为研究地铁列车在双层车辆段运行引起的上盖建筑振动及室内结构噪声特性,以国内某双层车辆段上盖物业工程为研究对象,采用现场实测和数值模拟相结合的方法,系统分析了双层车辆段上盖建筑振动与辐射二次结构噪声传递规律。基于大地-车辆段-上盖建筑有限元模型,分析了列车荷载作用下,运用库上盖建筑的振动传递特性,再利用声传递向量法分析了上盖建筑室内结构辐射噪声及其特性,最后对室内各板件的噪声辐射贡献度及吸声平板降噪效果进行了研究。分析结果表明:由于高频振动经过土体衰减迅速,在80 Hz以上频段,二层行车引起的上盖建筑底层振动显著大于一层行车;运用库车致上盖建筑振动在第10层衰减至最低水平,随着楼层的继续增加,振动出现放大现象;在40 Hz处天花板和地板对卧室场点声学贡献度最大,其中在顶层采用吸声材料后的降噪效果最为明显。  相似文献   

3.
建筑物室内结构噪声是地铁运营期的主要环境问题之一。采用多通道噪声振动实时采集分析系统,对成都地铁1号线临近的某住宅建筑进行室内噪声和楼板振动速度测试和分析。结果表明,室内噪声具有低频特征,特征频率为63 Hz,结构噪声是由地铁运行所导致的建筑物振动引起的;室内结构噪声声压级与楼板中央振动速度级存在近似线性关系即L_(p,i)=L_(Vmid,i)-(22.1±1.5);对照JGJ/T 170—2009室内二次辐射噪声限值和GB/T 50355—2018住宅建筑室内结构噪声限值可知,所测建筑物内由地铁列车运行导致的室内二次辐射噪声问题突出,特别是1/3倍频程63 Hz等效声级超标明显。  相似文献   

4.
随着城市轨道交通的快速发展,地铁运行时产生的振动所引起沿线建筑物室内振动与二次结构噪声问题引起人们的广泛关注。基于某城市轨道交通沿线6层居民楼1楼现场测试,对不同扣件工况下地铁沿线敏感建筑物的室内振动与二次结构噪声问题进行测试与分析。研究表明:地铁沿线建筑物室内各振动、噪声测点峰值频率基本一致,在扣件A工况下峰值频率约为63 Hz,替换为刚度较低的扣件B后,峰值频率在40 Hz~50 Hz左右;采用刚度较小的扣件有利于室内振动与二次结构噪声的降低;虽然所测得的不同测点峰值频率一致,但振级和声压级大小有所不同,基本呈现出振级与声压级随着与地铁线路距离的增加而减小的规律。  相似文献   

5.
针对上海市轨道交通地下线沿线居民噪声与振动投诉较为集中的22个敏感点,对地铁列车运行时产生的结构振动与结构噪声进行了实测,以分析地铁引起的结构振动与结构噪声影响情况,并将测试所得的最大振级与最大声级进行相关性分析。从实测及分析可见,各测点结构振动最大振级在55 dB~92 dB左右,振动频率主要集中在40 Hz~120 Hz左右;不同线路的二次结构噪声最大值差异较大,在25~300 Hz的中低频段范围内增量较大;结构振动及结构噪声在线路两侧15 m范围内衰减较快;结构噪声是由结构振动激发而产生的,两者之间存在一定的相关性,但因建筑结构的不同等因素影响,相关性存在很大差异。  相似文献   

6.
由于线路条件和行车速度的不同,地铁车辆段盖下不同功能区振源特性差异很大。对深圳某地铁车辆段进行现场实测,获得地铁列车在咽喉区及其在不同车速下在试车线运行所致振动在地面及上盖建筑中的传播规律,并对其环境振动影响进行评价。研究表明:在盖下不同区域地铁列车激励所引起同一建筑物的振动峰值所在频率不同,在试车线与咽喉区列车运行引起的振动峰值分别出现在63 Hz~80 Hz和31.5 Hz~40 Hz。场地土与上盖建筑物的振动耦合特性与振动频率相关,在较低频段4 Hz~25 Hz表现出整体振动特性,在中频段25 Hz~50 Hz振动出现一定程度放大,在63 Hz以上的中高频段中存在耦合损失。在地铁列车在试车线和咽喉区运行所引起的上盖建筑振动主要频率范围内,振动随着层高增加先减小再放大。研究成果可为地铁车辆段在不同区域振动控制提供参考。  相似文献   

7.
以武汉某220 k V变电站为研究对象开展现场试验,对主变室室内的振动加速度和二次噪声进行了实测分析。针对变压器引起的结构振动及二次噪声问题,提出一种以正弦荷载叠加加载的方式模拟变压器引起的结构振动的方法,并结合声辐射分析的边界元法对变压器诱发的二次噪声进行了数值仿真。结果表明:主变室后部建筑内一至四层1 min等效A声级均超过GB22337-2008《社会生活环境噪声排放标准》规范规定的限值要求;与实测数据进行对比可知本文提出的变压器荷载模拟方法可以有效模拟变压器本体所引起的结构振动;变电站有限元模型和声辐射边界元模型可以较好地模拟主变室内的振动和1~5层休息室内的二次噪声。  相似文献   

8.
以南昌地铁 1号线圆曲线(曲率半径为 400m)下穿南昌科技大楼段工程背景为依托,建立轨道-隧道-大地-科技楼三维有限元模型,从数值计算的角度分析地铁列车在曲地段运行时引起的环境振动对邻近建筑的影响。结果表明,曲线段地面的振动强度水平向接近竖向,这与直线地段主要以竖向振动为主的振动状态存在明显的差别;科技楼室内水平向振动强度低于竖向,第 1层的振动在 20Hz出现最大值,其它各楼层均在 6.3Hz和 16Hz出现最大值,室内第 1-8层竖向振动 1/3倍频程均超过标准夜间限值,需要作隔振处理;无论在水平向还是在竖向,列车行驶速度越快,振动响应越大,竖向振动在楼层间的变化幅度要小于水平向,水平向的振动最大值出现在底层或顶层;建筑结构基础形式采用桩基础,增大其产生的阻尼、刚度、附加质量,可以减小地铁环境振动的干扰。  相似文献   

9.
建立结构二维有限元分析模型,利用现场实测地铁运行引起地面振动加速度时程记录,采用多点输入,计算刚性地基上一框架结构由于地铁运行引起的振动加速度值;在此基础上,利用傅里叶变换计算1/3倍频程1Hz~80Hz内各频段对应的振动加速度级。利用同样的计算模型,采用一致输入和行波输入计算结构的振动强度;比较三种激励方式的计算结果,从而考察行波效应等对结构振动的影响。对地铁引起房屋振动做出评价。  相似文献   

10.
以成灌快铁安德站为工程背景开展现场试验,实测了轨道梁、站台、候车大厅和办公室区域的振动加速度和声压,并对实测信号进行时域和频域分析。采用数值方法在频域内分析了轨道梁振动、桥墩动反力、站房振动和室内二次辐射噪声,并将计算结果与实测值进行对比。结果表明:当列车以速度190 km/h通过车站时,轨道梁振动的优势频段为40~80 Hz,竖向振动加速度峰值小于规范限值;办公室和候车大厅地面振动的优势频段为20~100 Hz,振级接近80 dB;站台处、办公室内和候车大厅内噪声的优势频段分别为300~2500 Hz、40~63 Hz和20~100 Hz,办公室内和候车大厅内的低频噪声远远超出身心舒适度限值;桥墩竖向动反力的优势频段为25~63 Hz,是引起办公室和候车大厅地面振动的主要原因;站房–土体耦合有限元模型和内部声辐射边界元模型可以较好地模拟站房振动及二次辐射噪声。  相似文献   

11.
为研究高速铁路路堤段地面振动的传播和衰减规律,选择成渝高速铁路某路堤段进行现场地面三向振动测试。在时域和频域内分析地面三向振动的时程特征和频谱特征,以及垂向振动、水平向振动随距离的传播特性。结果表明,在距离线路纵向中心线同一距离处,横向(Y)、纵向(X)振动加速度最大值及有效值均大于垂向(Z),随距离的增加,加速度最大值及有效值均呈衰减趋势;随着距离的增大,三向振动的频率带宽均越来越窄,远场垂向和纵向振动主频均基本集中在33.6 Hz左右,横向优势频率集中在9.6 Hz。计权后的垂向振级高于水平向振级,未计权的水平向振级均大于垂向振级,未计权三向加速度级和计权三向振级随距离的传播近似符合负指数规律。  相似文献   

12.
为研究不同车站敷设方式对站台噪声特性的影响,选取同一线路相同站台型式的地下站及高架站展开现场噪声测试,根据列车进、出站时站台噪声水平、站台环境噪声水平及站台背景噪声水平分析车站敷设方式对站台噪声的影响,并根据噪声频谱特性分析两个站台噪声特性的差异。结果表明,两个站台在列车进(出)站时站台进(出)站端等效连续A声级LAeq存在大于现行标准限值80 dB(A)情况,站台中部噪声则始终低于标准限值。列车进、出站引起的地下站台噪声水平略高于高架站站台,其中列车进、出站时LAeq大约为0.3 dB(A)至2.1 dB(A),环境噪声水平LAeq,1h大约为0.8 dB(A)至1.1 dB(A),但无车无广播时高架站站台背景噪声略大于地下站台,大约为1.9 dB(A)。从列车进、出站站台时噪声频谱特性来看,200 Hz以下,两站台噪声峰值频率存在显著差异,高架站台出现在25 Hz至50 Hz,地下站台出现在50 Hz至100 Hz,主要由站台结构振动引起;200 Hz以上,两类站台噪声频谱分布规律基本一致,高架站声压级略小于地下站台,平均小2.0 dB(A)至3.8 d B(A)。建议根据不同敷设方式的车站的结构特性及站台空间形式采取噪声控制措施。  相似文献   

13.
为探究某种阻尼材料对高速列车铝型材地板的减振降噪效果,以波纹状铝型材为基板,先后对其喷涂厚度为2 mm和4 mm的阻尼层,并在隔声室中进行空气声隔声及结构振动声辐射的测试及比对分析。结果显示,随阻尼层厚度的增加,铝型材的空气声隔声效果增加,尤其在500 Hz之后的中高频段;其中,2 mm阻尼层能在铝型材裸板的基础上使计权隔声量提高4.5 dB,阻尼层厚度增至4 mm,计权隔声量再提高2.4 dB。在100 Hz ~250 Hz,2 mm阻尼层对降低铝型材的振动声辐射水平起反作用,而4 mm阻尼层能够起到一定作用;在315 Hz ~400 Hz,阻尼层厚度对其振动声辐射几乎没有影响;500 Hz以上,随阻尼层厚度的增加,铝型材振动声辐射水平大大降低,其中,500 Hz、1 250 Hz和3 150 Hz 三个频段的降低量最为显著。  相似文献   

14.
地铁列车振动对精密仪器影响的预测研究   总被引:4,自引:2,他引:2       下载免费PDF全文
以北京某新建地铁线路近距离经过某科研单位为研究背景,对现况道路边和实验室内仪器实验台面的环境振动进行了测试和评估;利用了现场实测与数值模拟相结合的预测方法,该方法考虑了建筑结构、实验台在不同频段下的振动衰减或放大作用,并在1/3倍频程频域下与国际通用的精密仪器防振要求进行比较。采用周期性有限元-边界元耦合方法预测了列车对自由场地的动力响应。基于实测振动响应传递比曲线将楼外振动响应折算到实验台面上,以此评价地铁列车振动对精密仪器的影响。研究结果表明:1)现况道路车流对实验台水平方向振动较大,应采取相应被动隔振措施;2)当列车低速、匀速通过时,振动对仪器影响较小;3)车速大于60km/h匀速通过时,应采用较高级别的减振轨道以确保仪器正常工作。  相似文献   

15.
运行列车引起的周围地面振动规律研究   总被引:5,自引:0,他引:5  
在京广铁路线附近进行了现场试验,测试分析了速度在21km/h―128km/h范围内运行列车引起的地面振动。结果表明:运行列车引起的地面振动的频率集中在10Hz―100Hz,车速对地面水平向振动的频率有一定影响;地面振动随至振源距离的增大呈波动性衰减;货物列车引起的地面加速度振级在各个方向上均明显大于旅客列车,其差值一般在10dB左右;列车引起的地面竖向振动大于两个方向的水平向振动,竖向振级为60dB―110dB;垂直线路的水平向振级为50dB―95dB;平行线路的水平向振级为55dB―80dB;线路附近的地面振动超过了我国关于环境振动规范的规定,说明运行列车引起的环境振动问题应当引起重视。  相似文献   

16.
通过研究运行列车引发的振动噪声所具有的属性,提出利用该噪声的基本设想。在已经进行的两次探索性观测试验中,得到运行列车引发的地振动噪声可以通过天然地震观测台站和地震勘探常规地震仪接收到的证据,通过对数据的初步分析,进一步提出运行列车引发的地振动噪声可能成为铁路沿线浅层地震勘探震源的基本理由,并给出需要进一步深入研究的问题。  相似文献   

17.
城市轨道交通高架结构振动与声辐射研究   总被引:3,自引:1,他引:2  
为研究城市轨道交通所引起的高架结构的振动及声辐射水平,采用有限元方法分别建立了连续梁桥的三维振动分析模型及二维声场分析模型,计算了当列车以60km/h的速度通过时桥梁的动力响应及辐射声压。通过频谱分析,声压频谱峰值除在160 Hz附近出现一个明显的峰值外,与振动频谱分布基本相同。相干性分析结果表明,连续梁桥控制90Hz以内的振动,将直接有效的控制辐射声压水平。通过改变桥梁阻尼、支座刚度、行车速度和车辆荷载等参数,计算分析了各参数对结构振动与噪声的影响程度  相似文献   

18.
以实测某鼓风机组管路振动载荷为激励源,应用ANSYS有限元软件和Virtual Lab声场模拟软件模拟楼板振动所产生的室内声场和声场在不同频率下的声振强弱耦合状态。模拟结果表明,声场在400 Hz以下的区域声振耦合不明显,400 Hz以上存在声振强耦合现象,声振强耦合模型的模拟结果与实测结果比较吻合。通过分析载荷谱和噪声频谱的频带特性,选用常见的阻尼隔振器和中间小质量块组成二级隔振系统,计算系统的振动传递系数,达到理想的隔振降噪效果。  相似文献   

19.
以遂渝铁路古家垭口隧道为研究对象,旨在研究时速200 km/h以下的隧道噪声特性。通过现场实测与结果分析,得到遂渝铁路CRH1A型和CRH1B型等两种不同类型的动车组列车通过古家垭口隧道洞口时的时域、频谱等噪声特性,并且发现列车进、出隧道导致的微气压波历时都约为50 s,波动周期约为1.7 s,频率主要在0.05 Hz~4 Hz,各测点最大声压级频率都在1.25 Hz。以列车通过时间段的等效声压级为评价量,总结其噪声衰减规律,对于今后开展环境影响评价工作具有一定的参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号