首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 937 毫秒
1.
利用中间补气技术将单缸滚动转子式压缩机应用于空气源热泵系统中,系统地研究以R410A为冷媒的热泵系统在变频、变补气压力工况下制热性能的变化规律。实验结果表明:中间补气系统的制热量及系统功率均随着压缩机频率f、中间补气压力pinj的增加呈上升趋势,同频率下系统功率则以线性方式增长,而系统制热量随着补气压力及频率的增大,其相对增长率逐渐减小。因此COPh在低频时存在最佳补气压力,而在高频时无极值点;与单级压缩系统相比,在800~1200 k Pa、50~80 Hz范围内,中间补气系统的制热量、功率、COPh最大提升分别为27.55%、30.75%、7.1%。随着频率及补气压力的增加,系统COPh下降,因此中间补气技术应与合理的控制策略相结合,可使中间补气系统达到节能高效的目的。  相似文献   

2.
在Tod=-10℃工况下调节压缩机工作频率及补气压力,实验研究R410A单缸滚动转子式压缩机系统的制热性能。试验测试系统采用双电子膨胀阀控制中间补气压力及压缩机吸气过热度。实验研究表明:随着补气压力的增加,中间补气系统的制热量逐渐增大,COPh呈现出先增加而后降低的趋势;而随着频率的增加,系统的制热量升高,系统COPh降低。相对于普通单级压缩系统,中间补气系统的制热量平均增长约26.1%,系统COPh在低频时最大提升幅度约为7.92%,在高频时其能效比相对较低。随着补气压力的增加,闪蒸器气液分离效率降低,部分液态冷媒经中间补气管道进入压缩机,中间补气系统性能降低且易产生湿压缩。因此在满足建筑物热负荷需求的同时,应合理控制中间补气压力及补气量。  相似文献   

3.
采用CO2跨临界循环水-水热泵技术,测试了CO2跨临界循环冷热联供机组的性能特点。通过调节压缩机频率、电子膨胀阀开度、蒸发器侧乙二醇水溶液进口温度与气冷器侧进水温度等方式,测试该机组在以制热为主要目标时最优排气压力的变化,以及不同参数对制热量、制冷量、制热COPh与系统综合能效COP(制热COPh与制冷COPc之和)的影响规律。研究结果表明:在额定工况下,压缩机频率从80 Hz增加到120 Hz时,系统最大制热COPh从3.9降到3.3;当乙二醇水溶液进口温度升高、气冷器进口水温降低时,系统的制热COPh以及系统综合能效COP都随之升高。机组同时供冷供热可明显提高系统综合能效,经济性好且节能效果显著。文中的研究成果对于屠宰、酿造等同时具有冷热需求的行业推广应用CO2冷热联供机组具有参考价值。  相似文献   

4.
搭建一套跨临界CO2空气源热泵系统,研究在不同压缩机运行频率以及排气压力下循环系统的热力性能,通过实验对比分析频率和排气压力对吸气压力、等熵效率、压缩机功耗、排气温度、CO2质量流量、系统制热量以及制热性能系数COP的影响。结果表明:排气压力不变时,只有吸气压力随着频率的上升而下降,排气温度、CO2质量流量、系统制热量和压缩机功耗都随之增加。系统COP随着排气压力的增加先上升再下降,随着压缩机频率升高,系统COP减小,最优排气压力升高,在最优排气压力下,系统的COP达到峰值。当压缩机运行频率为80 Hz,排气压力为8.4MPa时,此时最优等熵效率约为0.9,系统COP达到峰值为3.64。  相似文献   

5.
为提高CO2跨临界热泵采暖系统的性能,提出了双级压缩双气冷器中间补气回热系统。结合其他3种CO2热泵系统和R134a单级压缩回热系统,通过建立热力学模型,分析各因素对系统能效的影响。此外,通过构建综合考虑初始投资成本和年运行成本的经济性评价模型,结合典型年气象参数,研究不同城市中各系统在运行周期内的总投资情况。结果表明,CO2热泵系统中,双级压缩双气冷器中间补气回热系统最优COPh最高且可以超过R134a单级压缩回热系统,在环境温度为0℃、出水/回水温度为65℃/40℃时,理论性能系数(COPh)可达2.58,比R134a系统高9.1%,比CO2单级压缩系统高22.5%,且排气温度不超过现有压缩机排气温度极限,是能效最优系统。在选定样本城市中,热泵系统运行周期内的总投资成本在上海最低,而在沈阳最高,可见总投资成本受气候区域影响较大。由于CO2压缩机成本过高,CO2热泵系统的总投资成本高于R134a系统。随着CO2热泵技术的提高和生产规模的扩大,当压缩机成本降低80%,CO2双级压缩双气冷器中间补气回热系统的总投资成本将低于R134a系统。  相似文献   

6.
为探究电动汽车用短型线涡旋压缩机在不同工况下的补气特性及制热COP与补气系数k之间的联系,采用第二制冷剂量热器法进行实验研究。结果表明:补气主要对总质量流量的增量和压缩机功率的增量有影响,两者增长的强弱共同决定了该压缩机性能的变化趋势;蒸发温度越低则补气效果越明显,蒸发温度为-22℃时制热量可提高15.9%;排气温度随补气压力的增大先降低后逐渐升高,在补气压力较低时,压缩机效率可以得到一定的提升;蒸发温度在-22—-1℃的范围内,制热COP随补气系数k呈先增后降的趋势,并且制热COP在补气系数k为0.65—0.85的范围内最优。  相似文献   

7.
对双缸滚动转子式压缩机采暖热泵在环境温度(Tod)为-30~0℃,出水温度(Two)为41~50℃范围内的制热进行测试。研究表明:外界环境温度对排气温度、蒸发温度影响很大,对冷凝温度影响很小;热水出水温度对冷凝温度影响很大,对排气温度、蒸发温度影响很小。随着外界环境温度的降低,采暖热泵的制热量急剧下降,当Two=41℃时,Tod从0℃下降到-30℃,制热量的降幅达62.16%;随着出水温度的升高,采暖热泵的制热量下降缓慢,当Tod=0℃时,Two从41℃上升到45℃,制热量降幅仅为5.61%;外界环境温度对COPh值的影响也显著,当Two=41℃时,Tod从0℃下降到-30℃,COPh值从2.94下降到1.38,降幅达53.06%。双缸滚动转子式压缩机采暖热泵应用于-30~0℃的低温工况下,具有良好的实用价值。  相似文献   

8.
根据电动汽车热泵在低温下的制热需求并延长车辆行驶里程,开发了车外换热器支路和余热换热器支路并联的余热回收系统并进行了制热性能试验研究。试验结果显示,对于并联余热回收支路的喷射补气式热泵系统,补气支路压力和补气流量均随着余热量的增加而有明显的提升,而吸气主路流量受余热换热器出口过热度的影响。车外换热器支路和余热换热器支路的流量比也呈线性关系,流量比斜率与余热换热器出口相态有关。并联余热回收喷射补气热泵系统的制热性能随余热量的变化受压缩机吸气量和补气量这两个因素的共同影响。在7℃相对较高的环境工况下,余热量的增加有利于制热量的提升但COP没有优势;在-20℃较低的环境工况下,余热量的增加使得补气流量增长较大,但吸气流量衰减严重,对系统的制热性能提升不明显;在-10~0℃的环境工况下,制热量和COP都随余热量的增加而提升较大,-10℃时,1.8 kW余热量条件下的制热量比0.9 kW余热量条件下的制热量增加了11.6%,COP提升9.18%。  相似文献   

9.
提出了一种基于高温超临界喷气增焓技术的新型CO2热泵循环,以显著提升跨临界CO2热泵在高温循环加热工况下的制热性能。通过建立超临界喷气增焓型高温CO2热泵系统的数值模型,并采用EES(engineering equation solver)软件对该热泵系统的循环加热性能进行了仿真分析。研究了在较高气体冷却器出口温度下,蒸发温度、压缩机中间压力、气体冷却器压力等参数对单位容积制热量和性能系数(COP)的影响。结果表明:在最优排气压力下,气体冷却器出口温度高达60℃时,该热泵循环的COP也能达到3.0左右;相对于普通喷气增焓系统,COP明显提高;相对于无喷气增焓的常规系统,在气体冷却器出口温度为60℃时,相对补气量为0.3、0.4、0.5的超临界喷气增焓系统COP分别提高了14.8%、21.2%、29.2%;气体冷却器压力和中间压力对系统COP的影响变化趋势一致,但气体冷却器压力的影响更为显著;此外,存在最优的气体冷却器压力和中间压力使系统COP达到最大,在气体冷却器出口温度为60℃,相对补气量为0.4时,最优气体冷却器压力和中间压力分别为13.5MPa和8.5MPa。  相似文献   

10.
为提高变流量水源热泵系统在实际应用过程中的运行性能,分别进行恒定压缩机频率变膨胀阀开度和恒定阀开度变频率实验,提出一种频率-阀开度联合调控的策略并进行协同控制实验,研究该策略对于水源热泵系统性能的影响,并与仅使用电子膨胀阀或压缩机频率调控进行对比。结果显示:较低频率下电子膨胀阀的调节区间减小,适当增加冷冻水温度可以扩大其调控范围,最高制热量和最优性能系数COP对应的阀开度相同;频率为45—55 Hz时,调控区间较小,改变冷冻水进水温度对频率的调节特性影响不大,制热量随着频率的升高而升高,COP随着频率的升高而降低,可根据用户的不同需求选择较优的频率值;频率-阀开度的联合调控策略使系统在2个工况下的最高COP比仅使用阀开度调节提高了10%和9.9%,比使用频率调节提高了6.5%和7.6%。  相似文献   

11.
针对工业废水蒸发结晶过程中含盐浓度增大、从而导致沸点升和增压比偏高等问题,提出了喷气增焓型单级机械式蒸汽再压缩(MVR)蒸发结晶系统。基于EES软件建立了喷气增焓型单级MVR蒸发结晶系统数值模型,并研究了闪蒸压力Pflash、物料入口浓度c0、物料循环倍率CR、换热温差△Tpreh和△Tmhex以及补气压比指数n和补气率βv对系统热效率COP、单位闪蒸量的压缩机耗功wcomp、压缩机出口蒸汽过热度△tsuph和换热器UA值等参数的影响。结论如下:喷气增焓型MVR系统相比无喷气过程的单级MVR蒸发结晶系统具有更高的COP、更低的wcomp以及更小的△tsuph;随CR增大,压缩机增压比降低了32.8%,COP提高了54.8%;随Pflash增大,COP呈先降后升趋势,在30~35kPa时存在最低值;换热系统中,主换热器温差△Tmhex对MVR系统性能影响更为显著,△Tmhex每增大1K,COP平均降低4.0%、wcomp平均升高4.9%、UAmhex平均增加8.9%。  相似文献   

12.
冯荣  刘晔  孟欣 《过程工程学报》2021,21(5):601-608
热源塔风机和防冻溶液循环泵是热源塔热泵系统中除压缩机外的主要耗电设备.通过改变热源塔风机和防冻溶液循环 泵的工作频率,实验研究了冬季制热工况下闭式热源塔运行参数对热源塔吸热量和热泵系统性能的影响,研究结果表明,热源塔风机频率降低导致热源塔吸热量、系统制热量和热泵机组COP下降,但使系统能效比增大;热源塔吸热量随循环泵频...  相似文献   

13.
在原有研究的基础上,结合实际系统,本文对CO2跨临界热泵系统的特性进行再分析,通过参数计算,分析回热温度、气体冷却器出口温度、运行压力三种因素如何影响系统性能,提出提高CO2热泵运行效率的方法。分析结果表明:回热器并不总有效,而是与气体冷却器出口温度有关,当温度小于某临界值时回热会降低系统运行制热性能系数COPh,当温度大于此临界值时回热则有助于提高COPh;对应气体冷却器出口温度存在最优压力,但实际压缩机的可承受压力是有限的,导致系统在某些气体冷却器出口温度下不能在最优压力下运行,同时在不同的排气压力下,存在气体冷却器出口温度最高限定值,否则COPh不合理也不可接受;热泵出水温度以及气体冷却器出口温度共同影响系统排气压力的选择。  相似文献   

14.
刘军  张钰  毛祥  张振涛  杨鲁伟 《化工学报》2018,69(10):4342-4352
将超重力精馏塔、单螺杆压缩机与新型热泵工艺技术创新性地相结合,提出超重力热泵精馏的概念。设计并搭建一套处理量为300 kg·h-1的超重力热泵精馏热集成系统。以乙醇-水溶液为研究对象,使用单螺杆压缩机直接压缩乙醇蒸气。通过对超重力精馏塔不同转动频率的全回流实验和工业条件下系统的不同进料位置、不同回流比实验的研究,综合分析系统各影响参数的变化情况、节能特性和经济效益。结果表明,fHG在40 Hz下运转时系统性能最佳;进料位置下移或增加回流比,都可提高yD;如果仅从yD值大小考虑,FL03位置最佳;相比于低浓度乙醇-水溶液,处理高浓度优势更大;系统节能及经济效益显著,可为超重力热泵精馏在乙醇精馏的工艺流程选择、设计和应用方面提供理论指导。  相似文献   

15.
王世茂  杜扬  梁建军  周艳杰  李国庆  齐圣 《化工学报》2017,68(12):4865-4873
基于实验研究了静态破坏压力(pST)对含有弱顶面受限空间内油气爆燃超压荷载的影响,实验结果显示:不同pST下超压时序曲线分为4种类型,超压峰值包括破膜峰值(Δp1)、泄流峰值(Δp2)、外部爆燃峰值(Δp3)和局部不稳定燃烧峰值(Δp4)。当0≤pST≤2.5 kPa时,内部的最大峰值为Δp3;而当5 kPa≤pST≤30 kPa时,内部的最大峰值为Δp1。对于受限空间外部,最大峰值均为Δp3。当2.5 kPa≤pST≤20 kPa时,外部爆燃和泄放负压耦合会诱导容器内形成压力振荡,振荡周期和持续时间与pST有关。破膜阶段持续时间与pST呈正比,而泄流、外部爆燃、压力荷载振荡阶段持续时间与pST呈反比。内外超压峰值均随着pST的增大而升高,内部Δp1和Δp2的数值与pST呈线性关系,外部Δp3的数值与pST呈二次函数关系。  相似文献   

16.
针对家用“煤改电”空气源热泵,提出采用毛细管作为节流元件替代热力膨胀阀或电子膨胀阀,搭建了热泵系统实验装置。研究压缩机不同频率下,不同的毛细管长度对压缩机吸气压力、排气温度和机组制热量等制热性能的影响。实验结果表明,毛细管替代热力膨胀阀或电子膨胀阀后,系统能够长时间稳定运行;毛细管长度为500 mm、压缩机频率为35 Hz时系统制热性能最优,制热量、制热COP获得最大值,而其吸气压力和排气温度适中。  相似文献   

17.
机械蒸汽再压缩(MVR)蒸发系统是一种高效节能的蒸发体系。本文采用降膜蒸发器为蒸发主体、罗茨压缩机为蒸汽压缩机, 并以水为实验原料研究了一套MVR蒸发装置。实验中以总蒸发水量和单位能耗蒸发水量(SMER)作为MVR蒸发系统的性能指标, 分别研究了进料温度、蒸发压强、压缩机频率对其影响。结果表明:最佳进料温度是蒸发压强下的饱和液体温度;最适蒸发压强与具体系统的蒸发能力和压缩机效率密切有关, 在压缩机效率保持较高水平的前提下, 适当降低蒸发压强有利于系统的节能;压缩机的频率直接影响系统的蒸发量和压缩机的功耗, 在压缩机允许的范围内增大压缩机频率, 单位能耗蒸发量是增加的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号