首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 93 毫秒
1.
变量加权型主元分析算法及其在故障检测中的应用   总被引:1,自引:1,他引:0       下载免费PDF全文
蓝艇  童楚东  史旭华 《化工学报》2017,68(8):3177-3182
传统主成分分析(PCA)算法旨在挖掘训练数据各变量间的相关性特征,已在数据驱动的故障检测领域得到了广泛的研究与应用。然而,传统PCA方法在建模过程中通常认为各个测量变量的重要性是一致的,因此不能有效而全面地描述出变量间相关性的差异。为此,提出一种变量加权型PCA(VWPCA)算法并将之应用于故障检测。首先,通过对训练数据进行加权处理,使处理后的数据能够充分体现出变量间相关性的差异。然后,在此基础上建立分布式的PCA故障检测模型。在线实施故障检测时,则通过贝叶斯准则将多组监测结果融合为一组概率指标。VWPCA方法通过相关性大小为各变量赋予不同的权值,从而将相关性差异考虑进了PCA的建模过程中,相应模型对训练数据特征的描述也就更全面。最后,通过在TE过程上的测试验证VWPCA方法用于故障检测的优越性。  相似文献   

2.
传统的主成分分析(principal component analysis,PCA)算法选取包含大部分方差信息的成分作为主元,并将其应用到过程监控中。但是故障信息不一定会投影到方差较大的成分上,使用方差贡献度挑选主元会导致严重的信息丢失和监控效果的恶化。因此使用ReliefF-PCA算法,其中ReliefF算法从故障角度出发,挑选出在区分正常样本和故障样本上权重更高,效果相对更好的成分作为主元。这样挑选出的主元避免了传统PCA算法在主元挑选过程中出现的主观性、盲目性以及重要信息的丢失。ReliefF-PCA算法在过程监控中主要有两个优势,第1,监控效果更好;第2,对原始数据降维效果更好。随后,基于ReliefF-PCA算法,提出一种加权的故障变量贡献图方法。最后,通过Tennessee Eastman(TE)仿真实验测试,ReliefF-PCA算法达到了预期效果。  相似文献   

3.
基于动态主元分析的统计过程监视   总被引:14,自引:0,他引:14       下载免费PDF全文
陈耀  王文海  孙优贤 《化工学报》2000,21(5):666-670
针对时序相关观测数据 ,提出了一种动态主元分析过程 .仿真计算结果表明 ,过程观测数据的动态主元分析可看作是扰动“驱动”信号的提取过程 ,分析得到的主元变量实际上是驱动扰动的估计 .对CSTR过程的仿真监视研究 ,验证了基于动态主元分析的统计过程监视的有效性 .  相似文献   

4.
在利用主元分析(PCA)作统计监控时,没有主元与变量之间的生成模型,出现了检测指标量度不一致且只能离线故障识别等缺陷.而概率主元分析(PPCA)则在确定主元和误差的概率函数后,利用期望最大化(EM)算法建立了过程的生成模型,克服了PCA的不足.最后通过PCA和PPCA在化工分离过程监控中的应用比较,证明PPCA监控法方便、有效.  相似文献   

5.
基于加权互信息主元分析算法的质量相关故障检测   总被引:1,自引:1,他引:0       下载免费PDF全文
赵帅  宋冰  侍洪波 《化工学报》2018,69(3):962-973
质量相关的故障检测已成为近几年研究热点,它的目标是在过程监测中,对质量相关的故障检测率更高,对质量无关的故障少报警或不报警。传统主元分析算法的故障检测会对所有故障均报警,不能达到上述要求。另外,在实际工业生产中,质量变量通常难以实时获得,需要后续分析或延时得到。为此,提出一种融合贝叶斯推断与互信息的加权互信息主元分析算法。首先利用贝叶斯推断的加权方法将度量过程变量和质量变量之间相关关系的互信息进行融合,选出包含质量变量信息量最大的一组过程变量。然后对过程变量利用主元分析(principal component analysis,PCA)进行统计建模,再次根据加权互信息选出包含质量变量信息量最大的主元,建立统计量进行故障检测。最后,通过实验验证该方法的可行性和有效性。  相似文献   

6.
用主元分析方法完善DCS过程监控性能   总被引:6,自引:2,他引:6  
在分析目前DCS过程监控性能尚存不足的基础上,结合主元分析(PCA)算法,提出了一种用PCA完善DCS过程监控性能的系统结构。该系统包括组态环境与运行环境,其中组态环境完成主元模型的建立与检验、统计量控制限的确定以及统计量监视图的组态等功能;运行环境通过数据库调用组态环境设计的参数来完成实时过程监控。仿真结果表明,该方法能够结合DCS进一步完善系统的过程监控性能。  相似文献   

7.
基于稀疏核主元分析的在线非线性过程监控   总被引:2,自引:1,他引:1  
赵忠盖  刘飞 《化工学报》2008,59(7):1773-1777
核主元分析(KPCA)适合非线性过程的监控,但存在计算量大、实时性差等缺点。提出一种基于稀疏KPCA(SKPCA)的过程监控方法,先使用SKPCA对正常建模数据进行加权,少数权值大的数据基本能代表全部正常数据的信息,因此稀化了建模数据,然后根据稀化后的正常数据建立过程的KPCA模型,并提出监控指标,大大减少了计算量,提高了监控的实时性,最后以化工分离过程为对象,就KPCA与SKPCA的监控效果和实时性进行了详细的对比研究,结果表明了基于SKPCA监控方法的优越性。  相似文献   

8.
基于互信息的PCA方法及其在过程监测中的应用   总被引:9,自引:7,他引:2       下载免费PDF全文
童楚东  史旭华 《化工学报》2015,66(10):4101-4106
主元分析(PCA)是一种经典的特征提取方法,已被广泛用于多变量统计过程监测,其算法的本质在于提取过程数据各变量之间的相关性。然而,传统PCA算法中定义的相关性矩阵局限于计算变量间的线性关系,无法衡量两个变量间相互依赖的强弱程度。为此,提出一种新的基于互信息的PCA方法(MIPCA)并将之应用于过程监测。与传统PCA所不同的是,MIPCA通过计算两两变量间的互信息来定义相关性,将原始相关性矩阵取而代之为互信息矩阵,并利用该互信息矩阵的特征向量实现对过程数据的特征提取。在此基础上,可以建立相应的统计监测模型。最后,通过实例验证MIPCA用于过程监测的可行性和有效性。  相似文献   

9.
基于主元分析的延迟焦化过程连续故障检测策略   总被引:1,自引:0,他引:1  
提出了一种新的主元分析在线故障检测策略,并以PSOG软件为平台,将其长期应用于某炼油厂延迟焦化过程的在线故障检测。结果表明了所提出故障检测策略的有效性,并从应用结果出发,提出了过程故障诊断应用于实际所需的进一步研究内容。  相似文献   

10.
递归核PCA及其在非线性过程自适应监控中的应用   总被引:2,自引:0,他引:2       下载免费PDF全文
谢磊  王树青 《化工学报》2007,58(7):1776-1782
PCA、PLS作为常用的多变量统计监控算法,一般适用于线性、定常的过程。针对实际工业过程的时变、非线性特性,提出了一种递归核PCA(RKPCA)方法用于非线性过程的自适应监控。RKPCA算法通过将递归奇异值分解推广到核空间,给出了核形式描述的递归KPCA算法,运算复杂度比KPCA明显降低,保证非线性监控模型能够在线更新。在Alstom工业燃气发生装置上的自适应监控表明,所提出的RKPCA算法能够及时跟踪非线性过程的时变特征,保证了监控模型的有效性。  相似文献   

11.
基于主元子空间富信息重构的过程监测方法   总被引:2,自引:1,他引:2       下载免费PDF全文
仓文涛  杨慧中 《化工学报》2018,69(3):1114-1120
作为一种经典的多元投影方法,主元分析(PCA)已在多变量统计过程监测领域得到了广泛应用。然而,传统的主元挑选方法往往选择方差较大的主元以表征建模样本中包含的较大信息量,但当过程信息发生变化时,方差较小的主元所表现出来的变异性可能更为明显,即包含的信息量更为丰富,也更有利于故障检出。为此,提出一种基于主元子空间富信息重构的过程监测方法(informative PCA,Info-PCA)。该方法通过计算过程数据在各主元方向上累积T2统计量的变化率,选择变化较为明显的主元以重构主元子空间。在此基础上,建立相应的统计监测模型。最后,通过实例验证该方法用于过程监测的可行性与有效性。  相似文献   

12.
一种基于改进MPCA的间歇过程监控与故障诊断方法   总被引:4,自引:3,他引:4       下载免费PDF全文
齐咏生  王普  高学金  公彦杰 《化工学报》2009,60(11):2838-2846
针对基于不同展开方式的多向主元分析(MPCA)方法在线应用时各自存在的缺陷,提出一种改进的基于变量展开的MPCA方法,实现间歇过程的在线监控与故障诊断。该方法采用随时间更新的主元协方差代替固定的主元协方差进行T2统计量的计算,充分考虑了主元得分向量的动态特性;同时引入主元显著相关变量残差统计量,避免SPE统计量的保守性,且该统计量能提供更详细的过程变化信息,对正常工况改变或过程故障引起的T2监控图变化有一定的识别能力;最后提出一种随时间变化的贡献图计算方法用于在线故障诊断。该方法和MPCA方法的监控性能在一个青霉素发酵仿真系统上进行了比较。仿真结果表明:该方法具有较好的监控性能,能及时检测出过程存在的故障,且具有一定的故障识别和诊断能力。  相似文献   

13.
从建立潜变量自回归(AR)模型的角度出发,提出了一种基于潜变量自回归(LVAR)算法的化工过程动态建模与监测方法,旨在提取动态潜变量的同时给出各潜变量的AR模型。LVAR算法在最小化潜变量的AR模型残差的约束下,通过同时搜寻投影变换向量与AR系数向量,实现了对动态潜变量的特征提取及其AR模型的建立。此外,LVAR算法通过先提取动态潜变量后提取静态成分信息的方式,有效地区分了采样数据中的自相关性与交叉相关性。在对比实验中,通过比较分析LVAR方法与其他三种典型的动态过程监测方法在经典化工过程对象上的故障监测结果,验证了LVAR方法在动态过程监测上的优越性与可靠性。  相似文献   

14.
基于LTSA和MICA与PCA联合指标的过程监控方法及应用   总被引:2,自引:2,他引:0       下载免费PDF全文
江伟  王昕  王振雷 《化工学报》2015,66(12):4895-4903
独立成分分析(ICA)方法主要被用来对线性非高斯过程进行监控,为了提高对非高斯过程的监控效果,则利用过程数据信息对ICA的监控指标进行了改进,提出了一种改进的独立成分分析(MICA)方法。许多实际工业过程数据都具有非线性、非高斯与高斯混合分布的特点,为此提出了一种基于LTSA和MICA与PCA联合指标的过程监控的方法。首先采用局部切空间排列(LTSA)算法对样本数据进行非线性降维,然后分别用MICA和PCA方法得到非高斯与高斯统计量,对其进行加权得到新的统计量,并被用于过程监控。最后将该方法应用在田纳西-伊斯曼(TE)过程和乙烯裂解炉的过程监控中,证明了该方法的有效性。  相似文献   

15.
因子分析及其在过程监控中的应用   总被引:1,自引:5,他引:1       下载免费PDF全文
赵忠盖  刘飞 《化工学报》2007,58(4):970-974
概率主元分析(PPCA)模型是因子分析(FA)模型的一种特殊形式,而主元分析(PCA)模型是PPCA模型的一种特例。PPCA和PCA已经在过程监控中得到了成功的应用,但是这两种方法的约束条件较多,而FA约束条件少,因此更能反映数据的本质特征。本文将FA引入工业过程监控,通过期望最大化(EM)算法建立FA模型,然后提出基于FA的监控指标,并讨论了因子个数的选择方案。在田纳西-伊斯曼(TE)过程中的应用结果以及与PCA、PPCA监控结果的对比表明了该方法的优越性。  相似文献   

16.
Conventional principal component analysis (PCA) can obtain low-dimensional representations of original data space, but the selection of principal components (PCs) based on variance is subjective, which may lead to information loss and poormonitoring performance. To address dimension reduction and information preservation simultaneously, this paper proposes a novel PC selection scheme named full variable expression.On the basis of the proposed relevance of variables with each principal component, key principal components can be determined. All the key principal components serve as a low-dimensional representation of the entire original variables, preserving the information of original data spacewithout information loss.A squaredMahalanobis distance,which is introduced as themonitoring statistic, is calculated directly in the key principal component space for fault detection. To test the modeling and monitoring performance of the proposed method, a numerical example and the Tennessee Eastman benchmark are used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号