首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
HAN-基凝胶推进剂的热分解反应动力学   总被引:2,自引:0,他引:2  
为研究 HAN‐基凝胶推进剂的热分解特性,利用差示扫描量热仪(DSC)和热重分析仪(TGA)对两种含不同质量聚乙烯醇(PVA )的 HAN‐基凝胶推进剂样品进行热分析试验,并与一种双基推进剂进行对比。分析了HAN‐基凝胶推进剂和双基推进剂的热分解过程,得到热分解反应的动力学参数;采用等转化率法计算了活化能,采用Zhang‐Hu‐Xie‐Li等方法计算出热爆炸临界温度和自加速分解温度。采用Malek法推断出两种 HAN‐基凝胶推进剂样品的热分解反应的最可几机理函数。结果表明,HAN‐基凝胶推进剂的热分解是一个连续的放热过程,热分解较为彻底,残渣较少,活化能约为100 kJ/mol。当PVA含量增加时,其热爆炸临界温度和自加速分解温度升高。与双基推进剂相比,HAN‐基凝胶推进剂具有较好的热安定性。  相似文献   

2.
杜晓刚  吕秋玲  徐丽亚  顾浩 《农药》2006,45(4):248-250
用热分析的方法研究了3个国产优质代森锰锌的热分解反应,测定了该反应的活化能,提供了该反应的动力学基础数据。在所采用的测定和数据处理方法的条件下确定:用热重法(TG)测定代森锰锌的热分解反应活化能(Ea)的精确度比差示扫描量热法(DSC)高;用TG法测定产品Ⅱ的Ea(166±8kJ/mol)高于产品Ⅰ(146±8kJ/mol)和产品Ⅲ(148±5kJ/mol);这种测定热分解反应活化能的方法可望普遍用于研究提高代森锰锌热稳定性的生产工艺、添加剂筛选。  相似文献   

3.
纳米HMX基PBX的热分解特性   总被引:1,自引:0,他引:1  
采用溶液-水悬浮法,通过控制水料比、反应温度、搅拌速度等因素制备了纳米HMX基PBX。使用热重(TG)/差示扫描量热(DSC)同步热分析仪研究了其热分解特性。结果表明,纳米HMX基PBX热分解反应的DTG峰温、活化能和放热量分别为557.5K、270.5kJ/mol和816.3J/g;与微米HMX基PBX相比,纳米HMX基PBX的DTG峰温延后3.7K,活化能提高86.9kJ/mol,放热量增加158J/g。在558.3K以下,纳米HMX基PBX的安定性优于微米HMX基PBX。  相似文献   

4.
以4,4'二氨基二苯甲烷作为固化剂对邻甲酚醛环氧树脂进行固化反应研究,使用差示扫描量热法对固化热力学研究,通过Kissinger法测得固化反应表观活化能Ea为52.70kJ/mol,用Flynn-Wall-Ozawa测得非等温固化反应活化能为56.929kJ/mol。此外,用傅里叶变换红外光谱对固化反应历程进行了探讨,用热分析法对固化树脂的热分解动力学进行研究,固化产物在动态N2气氛下热降解机理为一级反应模式。  相似文献   

5.
《农药》2015,(4)
[目的]通过反应量热和绝热加速量热,对关键中间体5-乙基吡啶-2,3-二羧酸二乙酯的合成进行反应风险研究,建立动力学模型。[结果]5-乙基吡啶-2,3-二羧酸二乙酯热稳定性差,热分解温度为372.48 K,分解过程放出气体。摩尔反应热△rH_m为253.65 kJ/mol,反应的绝热温升△T_(ad)为88.35 K,热失控情况下体系最高温度MTSR可达366.30 K,存在潜在热失控乃至爆炸风险。合成反应动力学方程为r_A=5.60×10~(-1)C_A~(1.01)。合成反应对α-氯代草酰乙酸二乙酯的反应级数为1.01。  相似文献   

6.
以二氯乙二肟、叠氮化钠、盐酸羟胺和三氯化钛等为原料,合成了1,1′-二羟基-5,5′-联四唑钛盐(Ti-BHT)燃烧催化剂。利用差示扫描量热法和热重法研究了不同升温速率下Ti-BHT金属盐的热分解过程,获得了热分解动力学参数和热分解机理函数;用Ozawa法和Kissinger法计算了热分解动力学参数,进而计算出自加速分解温度、热爆炸临界温度和热力学参数;用微量热法测定了Ti-BHT的比热容。结果表明,Ti-BHT的活化能Ek为143.49kJ/mol,指前因子Ak为1.23×10~(13)s~(-1),热分解属于n=3的随机成核和随后生长机理;自加速分解温度TSADT为466.21K,临界爆炸温度Tbpo为505.42K,热分解活化自由能ΔG~≠为142.74kJ/mol,活化焓ΔH~≠为139.41kJ/mol,活化熵ΔS~≠为-6.78J/(mol·K);Ti-BHT在298.15K的标准摩尔比热容为800.51J/(mol·K);摩擦爆炸概率为20%,特性落高大于125.9cm,说明其机械感度较低,具有较好的安全性能。  相似文献   

7.
以二氯乙二肟、二甲基甲酰胺、叠氮化钠、盐酸羟胺和硝酸铅等为原料,合成了1,1-二羟基-5,5′-联四唑羟胺铅盐(Pb-TKX-50)燃烧催化剂,研究了Pb-TKX-50对推进剂机械感度的影响以及与推进剂组分的相容性;利用差示扫描量热法和热重法研究了Pb-TKX-50在不同升温速率下的热分解过程,计算其表观活化能(E K和E O)和指前因子(A K),得到其热分解动力学参数、热分解机理函数、热爆炸温度和热力学性质。结果表明,在推进剂配方中加入Pb-TKX-50燃烧催化剂,可以改善其撞击感度和摩擦感度,且与推进剂组分的相容性良好;Pb-TKX-50的主峰分解温度相对于TKX-50的主峰分解温度显著提高,说明其热稳定性显著提高。Ozawa法和Kissinger法得到Pb-TKX-50的表观活化能分别为181.45 kJ/mol和182.49 kJ/mol,且热分解过程符合Avrami-Erofeev方程;Pb-TKX-50的自加速分解温度和爆炸临界温度分别为500.53 K和544.33 K,表明其热稳定性良好;Pb-TKX-50催化剂的热分解自由能(ΔG^≠)为158.87 kJ/mol,活化焓(ΔH^≠)为187.03 kJ/mol,活化熵(ΔS≠)为52.98 kJ/mol。  相似文献   

8.
为研究高燃速推进剂改铵铜(GATo)的热安全性,采用差示扫描量热(DSC)法和热重(TG)法分析了GATo推进剂的热分解过程,计算了其热分解活化能(E_a)、指前因子(A)、分解温度(t_(e0))、热爆炸临界温度(t_0)及热力学参数,并测试了压伸成型管状GATo及含溶剂GATo推进剂药浆的5s延滞期爆发点及热爆发反应参数。结果表明,采用Kissinger法计算得到GATo推进剂的热分解活化能为139.1kJ/mol,指前因子为7.5×10~(15)s~(-1),分解温度为172.0℃;根据Hu-Zhao-Gao法计算得到GATo推进剂的热爆炸临界温度为182.8℃,低于RDX-CMDB推进剂GHT及GHQ;在升温速率为10℃/min时,GATo推进剂分解峰值温度的活化自由能(ΔG~≠)为113.8kJ/mol,活化焓(ΔH~≠)为135.3kJ/mol,活化熵(ΔS~≠)为29.7J/(K·mol)~(-1);压伸成型管状GATo与含溶剂GATo药浆的5s延滞期爆发点分别为231和234℃,热爆发分解反应活化能分别为112和132kJ/mol,表明溶剂对其热爆发分解反应活化能有较大影响。  相似文献   

9.
通过热失重分析法(TG)研究了杯[4]芳烃与对叔丁基杯[4]芳烃在氮气氛围下的热稳定性,利用Kissinger方法和Flynn?Wall?Ozawa方法分析计算二者的热解表观活化能,通过Coats?Redfern方法确定了热分解动力学机理与模型,并分别求出了材料主降解阶段的非等温动力学方程。结果表明,Kissinger和Flynn?Wall?Ozawa方法求得的杯[4]芳烃的表观活化能分别为166.64 kJ/mol和175.79 kJ/mol,求得的对叔丁基杯[4]芳烃脱叔丁基过程的表观活化能分别为153.97 kJ/mol和166.81 kJ/mol,其自身苯环热分解过程的表观活化能分别为248.38 kJ/mol和252.92 kJ/mol,两物质的热性能在氮气氛围下都表现得较为稳定,且分解温度对于高分子材料的适应性较强;杯[4]芳烃热分解机理函数为g(α)=[-ln(1-α)]3/2,反应级数n=3/2,其非等温热分解机理属于随机成核和随后生长反应,对叔丁基杯[4]芳烃脱叔丁基过程的热分解机理函数为g(α)=[-ln(1-α)]2/3,反应级数n=2/3,其非等温热分解机理属于随机成核和随后增长反应,自身苯环热分解过程的热分解机理函数为g(α)=α2,反应级数n=2,其非等温热分解机理属于一维扩散反应。  相似文献   

10.
采用差示扫描量热法考察了超临界二氧化碳(scCO2)的饱和时间、饱和温度(Ts)、饱和压力(Ps)和过氧化二异丙苯(DCP)用量对甲基乙烯基硅橡胶(MVQ)非等温硫化动力学的影响,并根据Kissinger法计算得到MVQ的硫化表观活化能(Ea),通过Málek法和?eatak-Berggren自催化模型确定了可用于描述MVQ硫化动力学行为的参数。结果表明,随着DCP用量增加,Ea增大。MVQ在scCO2中饱和12 h后Ea减少至117.0 kJ/mol。当Ts为70 ℃,Ps为20 MPa时Ea分别降至110.6 kJ/mol和109.4 kJ/mol。scCO2饱和前后MVQ的硫化反应级数均约为1,硫化过程均表现出自催化反应的特征。  相似文献   

11.
在程序升温条件下,用DSC研究了2,5,7,9-四硝基-2,5,7,9-四氮杂双环[4,3,0]壬酮-8的放热分解反应动力学参数.表明该反应的微分形式的动力学模式函数、表观活化能(Ea)和指前因子(A)分别为3(1-α)[-ln(1-α)](2)/(3), 204.7 kJ/mol 和 1020.89 s-1.该化合物的热爆炸临界温度为188.81℃.反应的活化熵(ΔS≠)、活化焓(ΔH≠)和活化自由能(ΔG≠)分别为141.6 J/(mol*K), 200.9 kJ/mol 和136.8 kJ/mol.  相似文献   

12.
纳米铝粉对硝胺炸药热分解催化性能的影响   总被引:2,自引:1,他引:2  
采用直流电弧等离子体蒸发法制备了高纯度的纳米铝粉,并用比表面积分析仪和扫描电子显微镜(SEM)对样品进行了表征.将纳米铝粉与硝胺炸药HMX和RDX用研磨混合法制成混合粒子,用DSC对单质HMX和RDX炸药以及纳米铝粉/硝胺炸药混合物进行催化特性测试,并对样品的热分解动力学和热力学参数进行了计算和对比.结果表明,加入纳米铝粉后,HMX和RDX在不同升温速率(2、5、10、20 K/min)下的放热峰峰温降低,活化能分别降低15和16 kJ/mol,热力学参数都有明显变化.纳米铝粉对HMX和RDX有明显的热分解催化作用.  相似文献   

13.
环氧灌封料固化反应动力学及其性能研究   总被引:2,自引:1,他引:1  
采用非等温示差扫描量热法(DSC)研究了环氧树脂(E-51)/甲基四氢苯酐/DMP-30/球形SiO2体系的固化反应动力学,采用Kissinger法和Crane公式对体系的DSC数据进行了处理,获得了固化反应动力学参数,确定了固化工艺。同时通过力学性能和热性能测试研究了球形SiO2添加量对复合材料性能的影响。结果表明,SiO2质量分数为10%的体系其起始固化温度为109.7℃,峰顶固化温度为134.8℃,终止固化温度为154.3℃;较好的固化工艺为100℃/2 h+140℃/2 h+160℃/2 h。该体系反应级数n=0.917,表观活化能Ea=78.52 kJ/mol。当SiO2添加量为30%时,其弯曲强度达到最大值97 MPa,同时热分解温度达到最大值332℃,试样热膨胀系数也明显降低。  相似文献   

14.
新型双马来酰亚胺改性环氧树脂体系性能研究   总被引:1,自引:0,他引:1  
用含二氮杂萘联苯结构的双马来酰亚胺(DHPZ-BM I)与4,4'-二氨基二苯砜(DDS)为复合固化剂固化环氧树脂(E-51)。采用示差扫描量热仪(DSC)研究了该体系的固化反应动力学,求得固化反应表观活化能Ea=63.28 kJ/mol,碰撞因子A=1.55×106s-1,反应级数n=0.89,该体系与链延长型双马来酰亚胺PPEK-BM I(DP=15)/DDS/E-51体系的固化反应动力学数据几乎相同,证明二者的固化反应过程相同。采用热失重分析仪(TGA)分析研究了上述2种固化体系的热分解动力学,前者的热分解活化能达215.04 kJ/mol,为后者的1.5倍以上,说明DHPZ-BM I/DDS/E-51是1种热稳定性能良好的耐高温环氧树脂体系。  相似文献   

15.
用DSC-TG研究了TATB的热分解过程。根据升温速率分别为5、10、15、20K/min的DSC和TG-DTG曲线计算了分解反应的活化能(E)、指前因子(A)和120℃时的速率常数(k120),并计算了升温速率为5K/min时,TATB分解峰值温度时的分解反应活化焓、活化熵和活化自由能,用小容量测试法研究了TATB在1-乙基-3-甲基咪唑醋酸盐/二甲基亚砜([Emim]Ac/DMSO)溶剂中的热爆炸特性。结果表明,采用Kissinger法和Ozawa法计算得到TATB分解反应的活化能分别为212.1和212.0kJ/mol,采用Rogers公式和Arrhenius公式计算得到A和k120值分别为5.87×1016s-1和3.87×10-12s-1;升温速率为5K/min条件下,TATB分解峰值温度时的分解反应活化焓、活化熵和活化自由能分别为206kJ/mol、61.42J/(K·mol)和167.39kJ/mol,TATB粉末的临界爆炸温度为336.6℃;TATB在[Emim]Ac/DMSO溶剂中不爆炸。  相似文献   

16.
研究温度对印楝素A、6-deacetylnimbin、6-deacetylsalannin、nimbin和salannin 5种同系物稳定性的影响。建立在不同温度条件下印楝素A及同系物的一级降解动力学模型,计算印楝素A及同系物降解反应的反应速率常数、温度效应系数(Q)、活化能(Ea)、活化焓(?H)和活化熵(?S)。结果表明,印楝素A及同系物在25℃条件下较为稳定,大于35℃时降解速率明显增大。印楝素A、6-deacetylnimbin、6-deacetylsalannin、nimbin和salannin 5种同系物的活化能分别为98.49kJ/mol、92.43kJ/mol、96.76kJ/mol、95.23kJ/mol和104.79kJ/mol,活化焓分别为95.84kJ/mol、89.78kJ/mol、94.11kJ/mol、92.58kJ/mol和102.14kJ/mol,活化熵分别为10.68kJ/mol·K、1.60kJ/mol·K、19.58kJ/mol·K、4.76kJ/mol·K和27.32kJ/mol·K。印楝素A及同系物在环境中的降解反应是自发反应,在环境中易自然降解。  相似文献   

17.
对叔丁基苯基五唑的合成及分解动力学   总被引:4,自引:0,他引:4  
以对叔丁基苯胺为原料,在低温条件下合成出对叔丁基苯基五唑(p-tBPP)。用低温动态核磁分析技术研究了p-tBPP的分解动力学,确定了p-tBPP的分解反应为一级反应;获得了p-tBPP的半衰期t1/2,得出在氘代甲醇中p-tBPP分解反应的活化能及指前因子分别为93.1kJ/mol和3.80×1014s-1,并在此基础上预估了在不同温度区间的稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号