首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
寇小文  顾雄毅  李平 《化工进展》2015,34(9):3279-3285
十氢萘是一种储氢密度很高的氢能载体,通过催化脱氢反应可将储存在十氢萘中的氢气释放出来。本文考察了用于制氢的十氢萘液相脱氢反应,在Pt负载的活性炭颗粒催化剂(Pt/AC)上可获得约47%的脱氢转化率;浓度分布显示十氢萘脱氢为分别生成萘及四氢萘的平行反应。在温度290~335℃、压力0.7~1.3MPa、搅拌转速1000r/min的条件下,在间歇高压釜中考察了十氢液相催化脱氢动力学,建立了脱氢反应表观动力学模型,对十氢萘脱氢实验数据进行非线性拟合,得到十氢萘脱氢表观动力学模型参数,生成萘及四氢萘的表观活化能分别为116.27kJ/mol、114.38kJ/mol。经统计检验,结果表明所建立的十氢萘催化脱氢表观动力学模型和参数估值是可靠的。  相似文献   

2.
柠檬酸铈的热分解机理及反应动力学   总被引:1,自引:0,他引:1  
在程序升温条件下,用DSC、TG/DTG、固相原位反应池/FTIR联用技术,研究了柠檬酸铈的热行为、分解机理和常压非等温分解反应动力学参数,获得了相应的动力学方程.结果表明,柠檬酸铈的热分解反应存在1个脱水吸热阶段(Stage Ⅰ)和2个放热阶段(Stage Ⅱ和Ⅲ);主放热分解阶段(Stage Ⅱ)的表观活化能Ea和指前因子A分别为148.59kJ/mol和1011.64s-1;动力学方程可表示为:dα/dt=1011.81(1-α)[-ln(1-α)]1/3e-1.79×104/T;反应机理服从n=2/3的Avrami-Erofeev方程.由加热速率β→0的DSC曲线的初始温度(Te)和峰温(Tp)计算得柠檬酸铈的热爆炸临界温度值Tbc和Tbp分别为527.09K和542.71K.反应的△S≠、△H≠和△G≠分别为:16.82J·mol-1·K-1、163.11kJ/mol和158.74kJ/mol.  相似文献   

3.
硫酸铵热分解能为硫酸氢铵溶液浸出粉煤灰提取氧化铝工艺过程提供硫酸氢铵溶液和氨水,研究硫酸铵热分解过程的机理和热分解动力学具有重要意义。通过X射线衍射、质谱和傅里叶变换红外光谱等对硫酸铵热分解过程的产物进行了表征,结果表明硫酸铵的热分解产物为硫酸氢铵、焦硫酸铵、氨气、水、氮气和二氧化硫。采用X射线衍射、质谱和傅里叶变换红外光谱等表征方法并与热重分析技术联用对硫酸铵进行了分析,结果发现硫酸铵的热分解过程分为3个阶段:硫酸铵分解形成硫酸氢铵和氨气;硫酸氢铵脱水形成焦硫酸铵;焦硫酸铵分解。采用Ozawa-Flynn-Wall和Kissinger-Akahira-Sunose无模型方法计算每个阶段的活化能。采用Coats-Redfern方法确定每个阶段最可能的机理函数。结果表明:第一阶段的平均活化能(E)为125.21 kJ/mol,ln A为18.46;第二阶段的平均活化能(E)为110.21 kJ/mol,ln A为13.94;第三阶段的平均活化能(E)为97.70 kJ/mol,ln A为8.44。  相似文献   

4.
为了探究高能燃料在强冲击环境下的安定性,还原了燃料实际使用环境,采用爆炸冲击和电爆轰冲击,对十氢十硼酸双四乙基铵(BHN-10)在冲击效应下的安定性以及分解气相和固相产物进行了研究;在BHN-10中加入HMX,考察其对燃料分解效率的影响。结果表明,BHN-10对于单一的炸药爆轰产生的冲击作用具有较好的安定性,1.0 GPa量级的冲击波不能够促使BHN-10发生分解;BHN-10在电爆轰冲击下的安定性较低,等离子体电爆轰方法产生的冲击和热的共同作用可以促进BHN-10分解为三乙胺、腈类、碳烷烃、烯烃、炔烃等高热值的有机可燃气体;加入HMX后,气体产物的碳链长度除三乙胺外均不超过4个碳原子,长度明显变短;HMX的加入可以大幅提高BHN-10燃料的分解效率,生成更高比例的低碳链易燃气体;在N_2气氛下,其固相分解产物为C_(60)以及正交晶型的B_(12)H_(16);在空气气氛下,其固相产物为C_(60)、B_(12)H_(16)、B_2O_3以及硼酸;将HMX与BHN-10燃料混合后,电爆轰冲击固体产物主要以非晶态的C和B形式存在。  相似文献   

5.
基于热重分析法研究甲基乙烯基苯基硅橡胶(简称苯基硅橡胶)的热分解动力学。结果表明:苯基硅橡胶在空气中的热分解有一个质量损失平台,热分解温度随升温速率的增大而提高;采用Flynn-Wall-Ozawa和Friedman法,在不涉及反应机理函数的条件下,分析得到苯基硅橡胶在转化率(α)为30%~70%时的表观活化能(E_a)平均值分别为178.071 8和179.826 8 kJ·mol~(-1),采用Kissinger法的最大热质量损失理论公式计算得到苯基硅橡胶的E_a为182.633 kJ·mol~(-1),3种方法所得的E_a具有较好的一致性;结合Coats-Redfern法得出苯基硅橡胶在空气中热分解反应为三维扩散控制,该法的理想反应机理函数应为g(α)=[(1+α)~(-1/3)-1]~2。  相似文献   

6.
利用TG-DTG-DSC技术研究了氢氧化锆非等温热分解过程,应用模型法和非模型法对热分解过程进行了动力学分析,建立了动力学函数,得到了氢氧化锆热分解反应机理。氢氧化锆在氮气中热分解的活化能E=71.26 kJ/mol,指前因子lgA=18.20,机理函数积分式g(α)=[-ln(1-α)]4,微分式f(α)=(1-α)[-ln(1-α)]-3/4,反应机理为随机成核和随后生长。  相似文献   

7.
在线性升温速率2.0、5.0、10.0和20.0K/min的条件下,采用热重-差热分析法(TG-DTA)测试5,5′-联四唑-1,1′-二氧二羟胺(TKX-50)的热分解行为,用Dzawa法和Kissinger法研究了其热分解动力学参数。结果表明,TKX-50的热分解过程可分为两个阶段,第一分解阶段活化能为147.05kJ/mol,指前因子为1012.91s-1,受二维扩散机理控制,反应机理服从n=1/2的Jander方程,热分解反应的动力学方程可表示为:dα/dT=1012.91/β×4(1-α)1/2[1-(1-α)1/2]1/2e14705/RT。  相似文献   

8.
周飞  杨林  曹建新 《硅酸盐通报》2019,38(5):1377-138
通过对贵州某中低品位磷矿进行TG-DTG热分析实验,分析了磷矿焙烧过程磷矿中白云石的热分解历程,运用等转化率法和模式配合法相结合的方法,研究了磷矿中白云石的热分解动力学、计算了相关动力学参数、得出磷矿中白云石热分解动力学模型.结果表明,磷矿中白云石热分解分为两个阶段,第一阶段活化能为111.9 kJ/mol,遵循二维相界面反应;第二阶段活化能为176.9 kJ/mol,遵循三维扩散(Jander方程).基于研究结果,建立了白云石热分解过程每个阶段的动力学模型.  相似文献   

9.
脱氢枞酸在空气中的热分解动力学   总被引:1,自引:0,他引:1  
采用TG/DTA/DSC热分析技术,在线性升温速率为5、10、15和20 K·min-1和静态空气条件下,研究了脱氢枞酸在空气气氛中的热分解动力学。由热重/差热法(TG/DTA)得到脱氢枞酸在空气中是一步分解;运用差示扫描量热法(DSC)测定了脱氢枞酸的熔点为445.05K,摩尔熔化焓为19.74 kJ·mol-1和摩尔熔化熵为44.35J·mol-1·K-1;分别利用Kissinger法和Flynn-Wall-Ozawa法对脱氢枞酸非等温热分解数据进行了动力学分析,同时利用Satava-Sestak法研究了脱氢枞酸的热分解机理。结果表明,脱氢枞酸的热分解机理为收缩球状界面反应模型R3,热分解反应的表观活化能为107.89 kJ·mol-1,指前因子为9.33×108 s-1)。  相似文献   

10.
《辽宁化工》2021,50(7)
利用自制动态测压装置对白云石在真空下热分解的反应动力学进行了研究。结果表明:白云石的热分解过程可分为第一、第二两个分解阶段,分别为碳酸镁组分的分解以及碳酸钙组分的分解。真空下白云石第一、第二分解阶段活化能分别为288.2、313.0 kJ·mol~(-1),均小于热重中测得的第一、第二分解阶段的活化能306.8、327.1 kJ·mol-1。真空的引入使得白云石热分解过程更加容易、更加充分。  相似文献   

11.
以热重-差热法(TG-DTG)为手段,研究配合物[Co(phendione)(SO4)(H2O)]·5H2O非等温热分解过程动力学.结果表明,标题配合物第一阶段热分解为相界控制反应(三维)机理,表观活化能为59.85KJ·mol-1,指前因子InA为16.36,反应速率方程为dα/dt=Ae-E(1-α)<2/3>.第...  相似文献   

12.
利用液相法合成了[NH3CH2CH2NH3][CuCl4],并对化合物的热稳定性、热分解及其动力学进行了研究。采用TG-DTG技术研究化合物[NH3CH2CH2NH3][CuCl4]的热分解,并应用微分法(Achar法)、Coast-Redfern法、Kissinger法、Ozawa法对非等温动力学数据进行处理,发现晶体的第一步分解是二维扩散反应,n=2,机理函数积分形式g(α)=[1-(1-α)1/2]2和微分形式f(α)=(1-α)1/2[1-(1-α)1/2]-1,表观活化能Ea=192.56 kJ.mol-1,指前因子A=2.13×1016s-1。标题化合物的第二步分解是化学反应,机理函数积分形式g(α)=(1-α)-1-1和微分形式f(α)=(1-α)2,表观活化能Ea=164.70 kJ.mol-1,指前因子A=2.90×1012s-1。  相似文献   

13.
采用DSC研究了10.7μm、2.6μm和40 nm铝粉对RDX热分解的影响.结果表明,微米铝粉对RDX的热分解基本没有影响;40 nm铝对RDX的一次分解和二次分解均有明显的促进作用;随着40 nm铝含量的增加,RDX的二次分解峰凸显出来并提前,峰形变得尖锐;当40 nm铝质量分数为30%时,二次分解峰掩盖一次分解峰...  相似文献   

14.
合成了以2-巯基吡啶为配体的汞(Ⅱ)配合物,通过元素分析、EDTA络合滴定分析和红外光谱对其进行了表征,同时采用TG-DTG技术研究了配合物的热分解机理及非等温动力学。结果表明:其配合物热分解过程经过二个阶段,第一步热分解属F2(化学反应)机理控制,非等温热分解的动力学方程为dα/dT=A/β.e-E/RT(1-α)2,表观活化能E=189.67 kJ/mol,指前因子A=3.79×1018/s。  相似文献   

15.
采用热重(TG)分析法研究2,5-呋喃二甲酸(FDCA)质量分数分别为0,25%,50%,75%,100%的聚对苯二甲酸-2,5-呋喃二甲酸乙二醇共聚酯(PEFT)的热氧化分解行为,使用Kinssinger法、Ozawa法和Coats-Redfen法对PEFT热氧化分解的表观活化能(Ea)和反应机理进行了分析.结果表明...  相似文献   

16.
一种判定RDX热分解机理函数与热安全性的方法   总被引:3,自引:0,他引:3  
将DSC、TG数据与Malek法相结合研究了RDX的热分解,得到外延起始温度Le0、拐点温度T、峰顶温度Tp、分解终止温度Tf、分解焓变ΔH、表观活化能E、指前因子A、反应级数n、热爆炸临界温度Tb和自加速分解温度TSADT;利用TG热分析得到RDX热分解的起始分解温度T0、质量损失Δm%、最大质量损失速率及对应的温度...  相似文献   

17.
对α-萘乙酸(C_(12)H_(10)O_2)的热分解机理进行了研究,采用TG曲线确定了它的热分解过程,并通过四种方程对其热分解过程的活化能En进行了计算,利用41种不同的机理方程af)((微分机理方程)和G(α)(积分机理方程),对其热分解过程的非等温动力学数据进行了线性回归处理,并推断出其热分解机理为n=1/4的化学反应机理,最可几函数为4/3af-=)1(4)(a,并建立了其动力学方程。  相似文献   

18.
以1,1,3,3-四甲基二苯基二硅氧烷为封端剂,八甲基环四硅氧烷与甲基苯基环硅氧烷混合物为共聚单体,在阴离子催化剂作用下合成了二甲基苯基硅氧基封端的聚(二甲基-甲基苯基)硅氧烷共聚物。采用非等温TG技术,在惰性气氛和5.0、10.0、15.0和40.0 K min 1线性升温速率条件下,考察了共聚物非等温热降解机理及反应动力学,采用Friedman-Reich-Levi、Flynn-Wall-Ozawa和Kissinger等方法对非等温动力学数据进行分析,所得平均表观活化能分别为113.64、115.69和145.80 kJ mol 1。采用等转化率法确定出共聚物热分解反应符合Avrami-Erofeev方程,反应机理为随机成核和随后生长。采用Crane和Doyle方法研究了不同升温速率对反应级数、活化能和指前因子的影响,结果表明降解反应为一级反应,反应活化能介于152.46~183.13 kJ mol 1之间,指前因子介于4.25×109~4.02×109s 1。同时采用等温TG技术得到失重5%和10%条件下的寿命方程,对共聚物的寿命进行了预测。  相似文献   

19.
通过热失重分析法(TG)研究了杯[4]芳烃与对叔丁基杯[4]芳烃在氮气氛围下的热稳定性,利用Kissinger方法和Flynn?Wall?Ozawa方法分析计算二者的热解表观活化能,通过Coats?Redfern方法确定了热分解动力学机理与模型,并分别求出了材料主降解阶段的非等温动力学方程。结果表明,Kissinger和Flynn?Wall?Ozawa方法求得的杯[4]芳烃的表观活化能分别为166.64 kJ/mol和175.79 kJ/mol,求得的对叔丁基杯[4]芳烃脱叔丁基过程的表观活化能分别为153.97 kJ/mol和166.81 kJ/mol,其自身苯环热分解过程的表观活化能分别为248.38 kJ/mol和252.92 kJ/mol,两物质的热性能在氮气氛围下都表现得较为稳定,且分解温度对于高分子材料的适应性较强;杯[4]芳烃热分解机理函数为g(α)=[-ln(1-α)]3/2,反应级数n=3/2,其非等温热分解机理属于随机成核和随后生长反应,对叔丁基杯[4]芳烃脱叔丁基过程的热分解机理函数为g(α)=[-ln(1-α)]2/3,反应级数n=2/3,其非等温热分解机理属于随机成核和随后增长反应,自身苯环热分解过程的热分解机理函数为g(α)=α2,反应级数n=2,其非等温热分解机理属于一维扩散反应。  相似文献   

20.
热降解动力学方法研究ABS的降解机理   总被引:2,自引:0,他引:2  
在空气气氛下,采用热重分析(TGA)研究了不同升温速率下丙烯腈-丁二烯-苯乙烯共聚物(ABS)的热降解过程,分别使用Flynn-Wall-Ozawa法和Kissinger法对降解过程进行动力学分析。结果表明,ABS降解包含2个阶段,350~450 ℃之间发生降解反应,同时伴有交联反应,降解活化能(Ea)在200 kJ/mol左右,转化率在80 %~90 %时发生炭化反应,Ea提高到262.81 kJ/mol;500~600 ℃之间是残炭的氧化,Ea降低到130 kJ/mol左右,炭层稳定性较差。ABS的降解过程反应级数为0.946,降解受到随机成核与生长机理控制,降解在ABS基体内进行,而不是表面,所以降解气体燃烧不完全,易产生黑烟和熔融滴落。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号