首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
提出一种二次热回收热管式空调系统,其利用热管换热器做到二次热回收,设计该系统并搭建实验台,通过理论计算和实验比较该系统与其他系统之间的差异。以合肥为例,从理论上分析了二次热回收热管式空调系统的冬、夏季能耗,通过对实验数据的分析得出本系统冬季新风风速在1.20~1.85 m·s~(-1)之间热回收率能达到10%~23.2%;夏季新风风速在1.20~2.0 m·s~(-1),室内外温差在4.2~8.0℃时热回收率能达到35%~55%,并提供了0~7.4℃的再热温差,表明了这种新的中央空调系统具有独特节能优势。  相似文献   

2.
段未  马国远  周峰 《化工学报》2016,67(10):4146-4152
提出一种泵驱动回路热管能量回收装置,用于回收公共建筑空调系统排风的能量,降低处理新风的能耗,并搭建实验平台,测试该装置在两种工况下的性能,分析工质质量流量、换热器换热面积和换热器迎面风速3种因素对装置换热量、温度效率和性能系数的影响,得出质量流量、换热面积和迎面风速的最优值。结果表明,夏季工况下,质量流量250 kg·h-1,换热面积58.0 m2,迎面风速1.8 m·s-1时,装置的换热量为4.09 kW,性能系数为9.26;冬季工况下,质量流量300 kg·h-1,换热面积58.0 m2,迎面风速1.8 m·s-1时,装置的换热量为6.63 kW,性能系数为14.20。  相似文献   

3.
热电制冷液体冷却散热器的实验研究   总被引:3,自引:2,他引:1       下载免费PDF全文
张博  王亚雄 《化工学报》2014,65(9):3441-3446
旨在开发一种新型热电制冷液体冷却装置,解决微电子设备芯片超频运行后的冷却问题。通过搭建实验测试平台,对该新型冷却装置在不同热通量、不同工况以及热电制冷器(TEC)在不同工作电压下的传热性能进行了实验研究。研究表明,限定热源表面温度(65℃)时,该散热器在实验风速7~13 m·s-1的条件下,最大散热能力可达45.2 W·cm-2,装置最低总热阻为0.107℃·W-1;当热通量为28.5 W·cm-2、风速为9 m·s-1和13 m·s-1时,TEC工作在最佳电压值下,使热源表面温度分别降低4.0℃和4.6℃。实验结果同时表明,新型热电制冷液体冷却装置的制冷性能与TEC工作电压相关,当热通量为28.5 W·cm-2、风速为9 m·s-1和13 m·s-1时,最佳工作电压分别为28 V和32 V。  相似文献   

4.
夏侯国伟  张俊杰  龙葵  马锐  张苗 《化工进展》2018,37(8):2919-2926
为提高脉动热管换热器在空调系统排风能量回收中的换热效率,提出了一种新型并联槽道板式脉动热管及由其组成的换热器。首先对单片热管在空调排风夏季工况下的能量回收情况进行了传热性能实验研究,影响因素包括槽道当量直径、充液率、工质种类、风速、风温、微倾角;然后对一组由7片热管顺排形成的板式脉动热管换热器的换热效率进行了计算。研究表明:新型板式脉动热管的适用工质为R141b,最佳充液率为25%;传热性能随新风温度及风速的升高而增强,新风、排风温差小于6℃时热管不启动;随风速增加,换热量增加,但换热效率有所降低;给定工况下板式脉动热管散热器的换热效率为44.1%;微倾角可使空调能量回收系统在保证良好换热效率的同时实现换季不换向,热管安装宜采用+2°左右的微倾角。  相似文献   

5.
通风与相变耦合条件下围护结构最佳蓄热性能   总被引:1,自引:1,他引:1       下载免费PDF全文
现阶段用于建筑围护结构的相变构件在蓄热阶段存在蓄热速率较低的问题。为了提高相变构件在蓄热过程中的蓄热速率,将相变构件与机械通风相结合,搭建了相变构件热性能研究实验台,测试了不同送风温度和送风风速工况下相变构件的蓄热性能,采用了有限差分法通过Matlab软件对相变构件蓄热过程进行数值计算以拓展实验送风温度工况,将风机能耗考虑在内,对系统整体的节能效果进行了分析,提出了有效的送风方法。结果表明:提高送风温度或风速可缩短构件相变完成时间,同时可以提高构件表面蓄热热流,当送风风速为1.0 m·s-1,送风温度由34℃提高到80℃时,液化过程的平均热流由23 W提高到322 W;同一送风风速工况下,最佳送风时间最终稳定在固定值;在送风温度80℃,送风风速2.0 m·s-1条件下,送风1.6 h时,系统能达到最大节能量,为891.8 kJ。  相似文献   

6.
热管式通风换热器热回收的实验研究   总被引:3,自引:0,他引:3  
针对普通住宅日常通风换气的特点设计出一台小型热虹吸管式通风换热器的样机,并利用热虹吸管换热器对房间通风系统中的冷量(热量)进行热回收实验研究。通过实验测试了该换热器在不同风量和新、排风温差条件下的热回收效率,以及新、排风的压力损失随风速的变化情况。实验结果表明,新风的温降(升)随着新、排风温差的增大而增大,随着风量的增大而减小;该样机的最大热回收效率在夏季可达70%,冬季为63%,新、排风的最大阻力损失仅为25 Pa,节能效果显著。  相似文献   

7.
于红梅  胥义  柳珂  钮怡清  程新 《化工学报》2017,68(3):1262-1269
借助差示扫描量热仪(DSC)和低温显微系统,研究了磁纳米粒子对典型玻璃化溶液Vs55在反玻璃化过程中等温结晶行为的影响。结果表明:(1)磁纳米粒子经过羧酸(CA)和聚乙二醇(PEG)表面修饰后,对Vs55溶液的玻璃化转变温度(Tg)几乎没有影响,但对其反玻璃化转变温度(Td)和反玻璃化结晶焓(HTd)影响较大;(2)在Vs55的反玻璃化温区范围内(-85~-60℃),随着等温温度的升高和降温速率的增大,经CA修饰的磁纳米粒子均会显著促进Vs55的反玻璃化现象,在-85℃等温时的冰晶生长速率为0.37 μm·s-1,75℃等温时则为2.19 μm·s-1,而当降温速率从2℃·min-1增大到100℃·min-1时(在-75℃等温结晶),其反玻璃化冰晶生长的速率由1.72 μm·s-1增大到3.54 μm·s-1;(3)与Vs55相比,两种修饰均明显促进了其反玻璃化,在-80℃等温结晶时,Vs55溶液的生长速率为0,而CA和PEG修饰分别达到了1.04 μm·s-1和2.31 μm·s-1;与CA修饰相比,PEG修饰后的磁纳米粒子更加促进了Vs55溶液的反玻璃化现象,在-85℃等温时的冰晶生长速率为0.62 μm·s-1,而-75℃等温时则达到了6.25 μm·s-1,这个结果也充分说明了磁纳米粒子表面修饰物质的不同必定会显著影响Vs55的反玻璃化结晶生长。  相似文献   

8.
魏民  王利民 《化工学报》2012,63(Z1):138-144
采用双流体模型对冰柜空气对流传热进行了数值模拟,在验证了模型有效性的前提下,考察了不同外部风速、风向以及不同风幕速度下的冰柜空气对流传热特性。结果表明,外部风速越大,冰柜内外热量交换越多,并且在较短时间内,冰柜内外热量交换与时间基本呈线性关系;外部风向与水平风向相差15°以内时,影响较小,而达到30°时,出现明显影响,能量损失相比水平风向增大约30%;此外,考察了风幕对隔绝冰柜内外热量交换的影响,发现存在最小风幕速度和最佳风幕速度范围,风幕速度小于1.5 m·s-1时不能形成有效风幕,大于3.0 m·s-1会造成冷气外溢,造成能量损失,最佳风幕速度范围为2.6~3.0 m·s-1。  相似文献   

9.
针对动力电池充放电过程积热问题,以动力锂电池(18650型)为研究对象,在25、30和35℃恒温环境中,研究自然风冷、强制风冷和相变材料冷却3种方式对电池在1、2和3 C倍率放电时散热性能的影响。研究结果表明,自然风冷下,电池温度随环境温度和放电倍率的增加而上升,且在35℃、3 C放电倍率时表面最高温度达到86.45℃,最大温升速率达到20.6℃·min-1;1和3 m·s-1风速下,温度分别下降31.29%和32.61%,且3 m·s-1风速时的温升速率下降至6℃·min-1以下;相变材料在电池多次循环充放电过程中,对电池冷却效果最稳定,降温效果最佳,最高温度低于50℃,表面温差小于3℃,且温升速率降低至3℃·min-1以下。研究结果对动力电池充放电过程热管理具有一定指导意义。  相似文献   

10.
陈思维  刘德绪  龚金海 《化工学报》2015,66(7):2607-2612
针对高含硫气田集输净化系统两相湍流流动条件下缓蚀剂预膜稳定性问题,利用高温高压动态循环腐蚀反应釜实验系统,开展高含硫气田典型管流流动条件下缓蚀剂膜稳定性评价研究:当流速在6 m·s-1以下时,缓蚀剂预膜稳定性较好;当流速超过7.5 m·s-1后,缓蚀剂预膜开始出现局部破坏;当流速达9 m·s-1时,缓蚀剂膜在较高的流动剪切应力作用下已完全失效。流体动力学研究表明剪切应力为6.5 N·m-2时为缓蚀剂膜发生整体破坏的临界点。  相似文献   

11.
填充泡沫铜圆管内R32单相流动换热   总被引:1,自引:1,他引:0       下载免费PDF全文
朴勇日  吴晓敏  马强  李通 《化工学报》2017,68(6):2275-2279
在泡沫金属纤维两端布置电极,采用电加热方法,实验测量了填充泡沫金属的管内R32流体和泡沫金属纤维的温度分布,得到了泡沫纤维与流体之间的对流传热系数。实验条件为:实验段管径5 mm,泡沫铜孔隙率0.95,孔隙密度15、45 PPI,流体温度280~325 K,热通量1~18 kW·m-2,质量流速20~200 kg·m-2·s-1。实验及模拟结果表明:泡沫纤维与单相R32的对流传热系数随Re、泡沫铜的孔隙密度的增大而增大。基于流体外掠光滑圆管换热实验数据的Zukauskas经验关联式的预测值与泡沫金属纤维和R32流体之间的对流传热系数的实测值偏差为-35%~-67%,即该关联式不适用于泡沫金属纤维与流体之间的对流传热系数的预测。  相似文献   

12.
段未  马国远  周峰 《化工学报》2017,68(1):104-111
为提高泵驱动回路热管系统的温度效率,探讨多回路系统替代单回路系统用于空调系统排风能量回收的技术可行性,制作了单回路和三回路泵驱动回路热管系统样机,搭建实验测试平台,研究单回路和三回路系统在夏、冬季运行工况下的换热特性,并基于换热温差均匀性原理进行对比分析。结果表明,相比于单回路系统,三回路系统的性能更优,冬季工况下室内外温差为31.9℃时,换热温差均匀性明显改善,系统温度效率提高22.6%,夏季工况下系统温度效率变化不大。  相似文献   

13.
王刚  巨永林 《化工学报》2015,66(Z2):123-131
撬装式液化天然气(LNG)流程要求设备紧凑,而传统换热器在减小其换热通道尺寸时会产生冻堵问题。热管极高的传热系数和良好的温度均一性,可以有效克服这种缺陷。根据小型天然气液化流程参数,设计制造了低温工质(丙烷、乙烷、甲烷等)重力热管换热器模块。实验结果显示,低温热管换热器在热通量为860 W·m-2时,每排热管的平均换热效率为43.28%,414排热管换热器总体换热效率可达到99.68%,换热量满足小型LNG液化流程50000 m3·d-1的处理量要求。并且在工况突变时,能够迅速将局部冷量均匀分布至所在迎风截面,防止高凝固点的杂质在通道内冻堵。  相似文献   

14.
地埋管换热器热短路及其对热物性测试影响分析   总被引:3,自引:2,他引:1       下载免费PDF全文
茅靳丰  李永  张华  耿世彬  韩旭  李伟华  王利军 《化工学报》2013,64(11):4015-4024
为了更准确地建立垂直地埋管换热器钻孔内传热模型,采用模拟分析的方法探讨了不同钻孔、支管和布置形式的冷热支管热量回流情况,并拟合得到了热短路热阻的表达式。建立了三维数值模型,分析了管内流体流速、埋深对热短路的影响,流速越小,热短路损失率越大和单位管长换热量越小,然而流速过大,热短路损失率减少并不明显且能耗加大;增加埋深可以增大埋管进出口的温差,但冷热支管间的热损失也大大增加。对比了流体积分平均温度与几何平均温度的差别,由于忽略了热短路的影响,往往线性几何平均温度值偏大。借助于试验平台,分析了流速变化和埋深变化对土壤平均传热系数测试的影响,结果表明:流速越小,热短路损失率越大,土壤平均传热系数越小,即埋管的换热能力也越低;埋管的深度应综合换热量要求、热短路损失、投资而确定。  相似文献   

15.
熔渣颗粒空冷相变换热的三维数值模拟   总被引:3,自引:0,他引:3       下载免费PDF全文
邱勇军  朱恂  王宏  廖强 《化工学报》2014,65(Z1):340-345
利用VOF方法结合凝固和熔化模型对熔渣颗粒在空气流中的冷却相变过程进行了三维数值模拟,讨论了熔渣颗粒直径和空气速度对冷却凝固过程演变的影响。结果表明:空冷方法能够实现熔渣颗粒表面的快速凝固成型,但同时也造成了颗粒内部的非均匀凝固。熔渣直径越小,完全凝固时间越短;空气流速越大时, 其表面换热越强, 完全冷却时间越短。颗粒初温为1673.15 K、直径为0.5~2 mm,风速为1~5 m·s-1条件下熔渣颗粒在2 s内释放出全部凝固热,后续空气最高温度能达到900 K以上。  相似文献   

16.
李静  曾诚  刘业明  张定 《化工学报》2014,65(6):2056-2062
冷却系统是塑料挤出管道生产工艺中的关键设备,其冷却的均匀性和效率直接影响管道产品的质量及生产速度。首先基于ANSYS对喷淋冷却瞬态传热进行模拟,结果表明:对流传热系数小于180 W·m-2·K-1时,冷却至目标温度(47℃)所需的时间随传热系数的变化明显;传热系数大于180 W·m-2·K-1时,冷却至目标温度所需的时间随传热系数的变化不大。然后基于FLUENT软件对喷淋喷嘴进行模拟,研究了喷淋入口速度、喷嘴高度对喷淋传热系数的影响,结果表明:随着喷淋入口速度的增加(6~15 m·s-1的范围内),总体对流传热系数增大,驻点处的传热系数由217 W·m-2·K-1增加到386 W·m-2·K-1;随喷淋高度的减小(68~128 mm范围内),壁面传热系数呈增加趋势,驻点处传热系数由227 W·m-2·K-1增加到311 W·m-2·K-1。基于以上研究,为真空定径喷淋冷却水槽的整体优化提出合理建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号