首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bokyung Kim  Jong Hak Kim  Jehan Kim 《Polymer》2009,50(15):3822-291
We report the transition behavior and the ionic conductivity of ion-doped amorphous block copolymer, based on two compositionally different polystyrene-block-poly(2-vinylpyridine) copolymers (PS-b-P2VPs) that can self-assemble into nanostructures, where P2VP block is ionophilic to lithium perchlorate (LiClO4). The transition temperatures of LiClO4-doped PS-b-P2VP, like the order-to-disorder transition (TODT), were measured by small-angle X-ray scattering (SAXS) and depolarized light scattering (DPLS). The selective ionic coordination to the nitrogen units of P2VP block leads to the increase of the repulsive interactions between two block components from weak- to strong-segregation regime with increasing amount of LiClO4, which results subsequently in the increased TODT. However, for a compositionally asymmetric PS-b-P2VP under lamellar morphology, the ionic conductivity by the addition of LiClO4 was remarkably increased at higher temperatures, representing that the effective ionic coordination at the greater volume fraction of P2VP block component improves the ionic conductivity as the temperature approaches to a rubbery phase.  相似文献   

2.
The morphology of as-cast and annealed thin films of four symmetric semicrystalline block copolymers on mica was investigated by tapping mode atomic force microscopy (AFM) and grazing incidence X-ray diffraction (XRD). It is found that the morphology of the thin films is dependent on chain length of oxyethylene/oxybutylene block copolymers. The as-cast thin films of the shorter EmBn block copolymers on mica exhibit a multi-layered lamellar structure parallel to the surface, in which the stems of the E crystals in the first half polymer layer contacting mica are parallel to the mica surface and perpendicular to the mica surface in the upper polymer layers. In contrast, the as-cast thin film of longer E224B114 exhibits a structure with mixed orientations of lamellar microdomains on a half polymer layer parallel to the surface. After annealing, the multi-layered structure on mica is transformed into a half-layered, densely branched structure, which is formed following a diffusion-limited aggregation mechanism, opposed to the featureless half-layered structure on silicon. Upon annealing, the upper polymer layers gradually retreat and the remaining area becomes thicker, but in contrast the first half polymer layer contacting mica becomes thinner due to wetting and the parallel orientation of the E crystal stems. The densely branched structure and the different chain orientations of the E crystal stems in the first half polymer layer contacting mica are attributed to the strong interaction between the E block and mica, as revealed by our previous work. The width of branches was employed to analyze the kinetics of secondary crystallization. It is also found that the width of the branches and the velocity of crystal front decrease as the chain length increases.  相似文献   

3.
Anionic polymerization was employed to synthesize well-defined diblock copolymers of polystyrene and poly(2-ethylhexylmethacrylate), PS-PEHMA. Diblock morphologies in bulk and in substrate-supported thin films were characterized by small-angle X-ray scattering (SAXS) and atomic force microscopy (AFM), respectively. PS-PEHMA diblocks exhibited thermotropic order-disorder transitions; one diblock showed a thermoreversible transition between lamellae and a higher-temperature morphology assigned as perforated lamellae. Unlike PS-poly(alkylmethacrylate) diblocks where the alkyl group is n-butyl or n-pentyl, PS-PEHMA diblocks showed a typical decreasing Flory interaction parameter with increasing temperature. Thin films of PS-cylinder-forming PS-PEHMA diblocks showed a strong preference for the cylinders to lie in the plane of the film; films of incommensurate thickness readily formed terraces. Films of commensurate thickness were easily aligned over macroscopic areas through the application of mechanical shear.  相似文献   

4.
The ordering of block copolymers in thin films is reviewed, starting from the fundamental principles and extending to recent promising developments as templates for nanolithography which may find important applications in the semiconductor industry. Ordering in supported thin films of symmetric and asymmetric AB diblock and ABA triblock copolymers is discussed, along with that of more complex materials such as ABC triblocks and liquid crystalline block copolymers. Techniques to prepare thin films, and to characterise ordering within them, are summarized. Several methods to align block copolymer nanostructures, important in several applications are outlined. A number of potential applications in nanolithography, production of porous materials, templating, and patterning of organic and inorganic materials are then presented. The influence of crystallization on the morphology of a block copolymer film is briefly discussed, as are structures in grafted block copolymer films.  相似文献   

5.
B.H. Sohn  S.H. Yun 《Polymer》2002,43(8):2507-2512
We obtained perpendicular lamellar orientations in thin films of symmetric polystyrene-block-poly(methyl methacrylate), PS-b-PMMA, on self-assembled monolayers (SAMs) of 3-(p-methoxyphenyl)propyltrichlorosilane (MPTS) prepared on silicon wafers. In contrast to completely parallel lamellae on silicon wafers having a native oxide layer, perpendicular lamellae at the MPTS interface with parallel lamellae at the air interface were directly observed by transmission electron microscopy (TEM) in cross-sectional view. The perpendicular lamellae at the MPTS interface were attributed to the non-preferential (neutral) MPTS-covered substrate to both PS and PMMA blocks. The neutrality of the SAMs of MPTS was confirmed by the similar interfacial tension values of the SAMs of MPTS with PS and PMMA, estimated by contact angle measurements.  相似文献   

6.
In this paper, Cu/V oxide thin films were prepared by reactive d.c./r.f. co-sputtering. Nanostructured films were obtained and their composition and crystallinity were investigated. The electrochemical behavior of the thin film electrodes was studied, in order to evaluate their performance as cathodes in miniaturized systems. The behavior of the mixed oxide films and the pure vanadium pentoxide in thin film form are compared. All films presented a high insertion capacity in the first cycle. The film with composition Cu4.0VO5.5 presented the highest capacity and stability in comparison with all the other films.  相似文献   

7.
《Ceramics International》2022,48(2):2112-2117
SiCN ceramics show large potential in high temperature pressure sensors with excellent stability up to 1000 °C, as it is changeling for the most of the existing pressure sensors to work stably at a temperature above 600 °C. However, bulk SiCN ceramics are not compatible to microelectronic processing and exhibit slow response due to viscoelasticity, it is necessary to propose alternative method to prepare SiCN functional structures. In this work, SiCN piezoresistive thin films are prepared by magnetron sputtering, and the influence of sputtering power on their piezoresistive properties and interfacial strengths are studied. The gauge factors of SiCN films range from 2786 to 4714 at various sputtering powers, which are significantly higher than the range from 46 to 1105 for existing piezoresistive thin films. Upon an optimal sputtering power of 75 W for silicon nitride target, the obtained SiCN sample show the largest gauge factors in a large range from 0.5 to 3.4 MPa. Furthermore, the SiCN thin films present high critical loads up to 36.5 N in scratch tests and indicate strong interfacial adhesion with substrate. This work provides an important reference for developing SiCN-based MEMS pressure sensors.  相似文献   

8.
Coextruded polypropylene/tie/ethylene vinyl alcohol/tie/polypropylene (PP/tie/EVOH/tie/PP) films often exhibit optical defects which appear as randomly distributed scattering objects, in the submillimeter range. These defects may strongly affect the film transparency and prevent their practical use in packaging. Based on an objective optical test aimed at quantifying the film transparency, and on a systematic analysis, through optical microscopy, of transverse cuts of films obtained in various coextrusion conditions, the nature of the defects could be identified as resulting from a modulation of the thickness of the inner ethylene vinyl alcohol (EVOH) layer, with no variation in the overall thickness of the multilayer films. Thanks to a recently developed method to dose the surface density of interfacial copolymers, a clear correlation between the amplitude of the thickness modulation of the inner EVOH layer and the density of copolymer molecules formed in situ at the EVOH/tie layer interface during the coextrusion process was established. These results open the way to a better design of tie layers composition to avoid these kinds of defects.  相似文献   

9.
The effect of morphology on ion transport in ionic liquid-based solid-state films was investigated. In this study, mixtures of a block copolymer, poly(styrene-b-methyl methacrylate) (SbMMA), and an ionic liquid (IL), 1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl)imide (EMIm-TFSI), were prepared as clear solid-state films at various IL compositions (0-50 wt%) by solution casting from a volatile co-solvent. The IL was preferentially miscible with the MMA block as evidenced by visual inspection and differential scanning calorimetry. Both equilibrium and non-equilibrium morphologies were identified with X-ray scattering and transmission electron microscopy and the morphology varied with MMA/IL volume fraction. The morphology and microdomain orientation had a significant impact on ionic conductivity. Higher through-plane conductivities were observed in morphologies with a three-dimensionally continuous conducting path (e.g., non-conducting S cylinders) compared to morphologies with a non-continuous conducting path (e.g., lamellae). When the lamellae were oriented in the plane, the through-plane conductivity was significantly lower than the in-plane conductivity, while the conductivity was direction-independent when the morphologies have a continuous conductive path. Also, a significant increase in conductivity was observed with increasing IL content at the glass transition of the conductive (MMA/IL) microdomain. Finally, significantly higher ionic conductivities can be achieved in a block copolymer/IL solid-state film compared to a homopolymer/IL film at the same IL content (wt%), because the non-conductive microdomain excludes IL, which produces a higher local IL concentration in the conductive phase.  相似文献   

10.
Hubert Elbs 《Polymer》2004,45(23):7935-7942
We have used spectroscopic ellipsometry to determine the Flory-Huggins parameters in thin films of polystyrene, poly(2vinyl pyridine), and poly(tert butyl methacrylate) swollen in controlled atmosphere of various common solvents. From the experimental data the concentration dependent Flory-Huggins interaction parameters between the homopolymers and the different solvents are revealed. Similar experiments were performed on binary copolymers of the three components. From the comparison between the degree of swelling of the homopolymers and the copolymers, respectively, the polymer/polymer Flory-Huggins interactions parameters are determined as a function of solvent content as well.  相似文献   

11.
Block copolymer (BCP) thin films have been proposed for a number of nanotechnology applications, such as nanolithography and as nanotemplates, nanoporous membranes and sensors. Solvent vapor annealing (SVA) has emerged as a powerful technique for manipulating and controlling the structure of BCP thin films, e.g., by healing defects, by altering the orientation of the microdomains and by changing the morphology. Due to high time resolution and compatibility with SVA environments, grazing-incidence small-angle X-ray scattering (GISAXS) is an indispensable technique for studying the SVA process, providing information of the BCP thin film structure both laterally and along the film normal. Especially, state-of-the-art combined GISAXS/SVA setups at synchrotron sources have facilitated in situ and real-time studies of the SVA process with a time resolution of a few seconds, giving important insight into the pathways and mechanisms of SVA induced restructuring. We give a short introduction to the GISAXS method and review recent theoretical studies, experimental techniques such as sample preparation and in situ chambers together with SVA protocols, and we review and discuss experimental results. We conclude by giving an outlook on emerging developments of the in situ real-time GISAXS scattering technique in combination with new approaches to control BCP thin film structures using SVA.  相似文献   

12.
In this report, the fatigue behavior and lifetime of Polyimide/silica (PI/SiO2) hybrid films are investigated. To evaluate the fatigue property of this class of hybrid films, the stress‐life cyclic experiments under tension–tension fatigue loading with 10 Hz of the frequency are performed, and the stress ratio is 0.1. Dynamic creep and cyclic softening/hardening are analyzed based on the change of hysteresis loops during the fatigue process. The structure‐property relations are discussed to further understand their phenomenon and deformation mechanisms. To predict the fatigue life of this class of hybrid films, a semiempirical model is proposed based on fatigue modulus concept. The simulated results are well agreeable with the testing values. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
Wendy van Zoelen 《Polymer》2009,50(15):3617-4769
Polypyrrole has been chemically synthesized on thin film nanostructures obtained from comb-shaped supramolecules of polystyrene-block-poly(4-vinyl pyridine) (PS-b-P4VP) hydrogen bonded with pentadecylphenol (PDP). PDP was washed from thin films of cylindrical and lamellar self-assembled comb-copolymer systems, which resulted in removal of the upper layers of microdomains, leaving single cylindrical and lamellar layers covering a substrate, with P4VP segregated at the bottom as well as at the free air interface. This P4VP was complexed with Cu2+ ions, after which chemical oxidation polymerization of pyrrole resulted in a thin polypyrrole layer covering the nanostructured block copolymer. The use of a catalytic amount of bipyrrole greatly improved the quality of the obtained product. The conductivity was measured to be ∼0.7 S cm−1.  相似文献   

14.
Mechanical properties and orientational order of a series of uniaxially oriented block copolymer films and fibers comprised of alternating rigid aramid blocks of poly(p-phenylene terephthalamide) (PPTA) and flexible blocks of polyamide 6,6 (PA 6,6) have been investigated. The prepared block copolymer films differ in aramid content and average block length. The films were prepared by shearing the polymer solutions (in sulphuric acid) followed by rapid coagulation of the solutions in water. From wide angle X-ray scattering (WAXS) and optical polarisation microscopy (OPM) it was found that films with a mole fraction of PPTA of at least 0.5 show a liquid crystalline (LC) phase. It was found that the mechanical properties of LC block copolymer films are similar to the properties of isotropic films, as determined with dynamical mechanical analyses (DMAs) and from tensile tests. This was attributed to the relative low parameter of the LC films obtained by using WAXS. Copolymerisation of the PPTA blocks with the flexible polyamide blocks resulted in an increase of storage and Young's modulus, a decrease of the elongation at break while the tensile strength was unaffected compared to normal PA 6,6. Block copolymer fibers have been spun from liquid crystalline solutions by means of a dry-jet wet spinning process. The only variable parameter was the imposed draw-ratio in the air-gap of the spinning process. Increasing the draw-ratio resulted in an increased molecular orientation, Young's modulus and tensile strength of the fibers while its effect on the maximum elongation at break was small. Heat treatment at 300 °C of the fibers resulted in an increase of the Young's modulus, a minor increase of the strength and a decrease of the elongation at break. Scanning electron microscopic (SEM) photographs of the fractured surfaces of the block copolymer fibers do not show a fibrillar fracture surface, which is typically observed for pure PPTA fibers.  相似文献   

15.
The influence of ram extrusion on structure and mechanical properties of a triblock copolymer consisting of polystyrene (S) outer blocks and poly(styrene–stat–butadiene) (S/B) middle block is studied for a wide range of shear rates. Structural features on the mesoscale (10–100 nm) are investigated by small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). Transition Moment Orientation Analysis (TMOA) is applied to quantify the orientation on the molecular (segmental) scale (<1 nm). All extruded samples microphase-separate and show a lamellar morphology with periodicities of about 33 nm. Significant orientation is observed on the mesoscale where the surface normals of the lamellae are preferentially perpendicular to the extrusion direction. The corresponding degree of orientation drops slightly at elevated shear rates of about 600 s−1. Interestingly, Chevron-like pattern with two preferred orientations of the lamellae are observed in cross-sections probably due to shear velocity gradients in the rectangular die. In contrast, significant orientation on the molecular scale is absent for styrene and butadiene units indicating basically random orientation of the chain segments. The mechanical properties are, however, strongly anisotropic. Uniaxial tensile tests performed parallel and perpendicular to the extrusion direction reveal higher E moduli (1.1 – 0.6 GPa) along with yielding but significantly smaller E moduli (100−250 MPa) without pronounced yielding. Main trends in both moduli, E and E, can be explained based on mesoscale orientation using the analytical composite model. In general, the results demonstrate that orientation effects on the mesoscale have a strong influence on the mechanical properties and must be considered during the optimization of extruded or injection-molded components made from microphase-separated block polymers.  相似文献   

16.
The thin films of a symmetric crystalline-coil diblock copolymer of poly(l-lactic acid) and polystyrene (PLLA-b-PS) formed lamellae parallel to the substrate surface in melt. When annealed at temperatures well above the glass transition temperature of PLLA block (TgPLLA), the PLLA chains started to crystallize, leading to reorientation of lamellae. Such reorientation behavior exhibited dependence on the correlation between the crystallization temperature (Tc), the glass transition temperature of PS (TgPS), the peak melting point of PLLA crystals (TmPLLA), and the end melting point of PLLA crystals (Tm,endPLLA). When annealed at (Tc=) 80 °C (Tc < TgPS < TODT, order-disorder transition temperature), 123 °C (TgPS < Tc < TmPLLA < TODT), 165 °C (TgPS < TmPLLA < Tc < Tm,endPLLA < TODT), the parallel lamellae became perpendicular to the substrate surface, exclusively starting at the edge of surface relief patterns. Meanwhile, the corresponding lamellar spacing was significantly enhanced. The PLLA crystallization between PS layers was hypothesized to account for the lamella reorientation during annealing. The crystallization, chain conformation, and possible chain folding mechanisms were discussed, based on detailed analysis of the lamellar structure before and after crystallization.  相似文献   

17.
We demonstrate a new and simple route to fabricate highly dense arrays of hexagonally close packed inorganic nanodots using functional diblock copolymer (PS-b-P4VP) thin films. The deposition of pre-synthesized inorganic nanoparticles selectively into the P4VP domains of PS-b-P4VP thin films, followed by removal of the polymer, led to highly ordered metallic patterns identical to the order of the starting thin film. Examples of Au, Pt and Pd nanodot arrays are presented. The affinity of the different metal nanoparticles towards P4VP chains is also understood by extending this approach to PS-b-P4VP micellar thin films. The procedure used here is simple, eco-friendly, and compatible with the existing silicon-based technology. Also the method could be applied to various other block copolymer morphologies for generating 1-dimensional (1D) and 2-dimensional (2D) structures.  相似文献   

18.
Synchrotron X-ray reflectivity (XRR) shows significant differences between the ordering in thin films of diphenyl-based siloxane oligomers with single versus double backbones of -Si-O- repeating groups. We show that the more restricted conformational arrangement of twofold-skeleton molecules results in a higher degree of molecular ordering indicated by 2-2.5 times higher value of intensity of the corresponding Bragg peak in thin solid films of poly(phenylsilsesquioxane) than in films of poly(diphenylsiloxane), regardless of the solvent used for film casting. In both cases, the ordered molecules are located within 40-50 Å of the substrate surface. The results indicate unambiguously that the chain stiffness of siloxanes governs the degree of ordering in the restricted geometry of the interfacial region.  相似文献   

19.
(Bi0.5Na0.5)TiO3 based ferroelectric lead-free thin films have great potential for modern micro-devices. However, the multicomponent feature and volatile nature of Bi/Na makes the achievement of high quality films challenging. In this work, the morphotropic phase boundary composition, 0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3 thin films were successfully prepared by CSD method. Dense films with low dielectric loss and low leakage current density were obtained. A well-defined polarization hysteresis loop with a high remnant polarization was observed in the thin films. Moreover, the polarization behavior of the film at original state, under electric field and upon heating was investigated by PFM. A self-polarization and asymmetric domain switching behavior were observed. High temperature induced depolarization and the self-polarization recovered upon cooling. The thin films with good quality show a promising potential for the application in electrical devices, and the in-depth investigation of the polarization behavior improves the understanding of ferroelectric and piezoelectric properties of thin films.  相似文献   

20.
Poly(γ-benzyl l-glutamate) (PBLG) forms a rigid helical rod in organic solvents. Cholesteric liquid crystalline ordering of these rods has been observed in PBLG solutions and cast films. In this research, peptidic block copolymers were created using PBLG in order to determine the effect of an added block on the classic cholesteric ordering. Peptide blocks with varied lengths and inherent secondary structures, random coil or rigid rod, were attached to PBLG molecules. The self assembly/liquid crystalline ordering of these molecules in films cast from various organic solvents was probed with transmission electron microscopy (TEM), atomic force microscopy (AFM), and X-ray diffraction (XRD). In pure PBLG and PBLG diblock copolymers with relatively small additional blocks, cholesteric liquid crystalline ordering was observed in bulk films. However, depending on the kinetics of film formation and the amount of non-PBLG block, significant changes in the nanostructure and microstructure were observed. These purely peptidic block molecules provide the opportunity to pattern materials with peptidic functionalities by taking advantage of block copolymer phase behavior and liquid crystal ordering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号