首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aromatic diamine-based benzoxazines and their high performance thermosets   总被引:1,自引:0,他引:1  
Four high-purity aromatic diamine-based benzoxazines (13-16), which could not easily be synthesized by traditional approaches, were successfully synthesized by a facile, widely useful three-step synthetic method using four typical aromatic diamines - 4,4′-diamino diphenyl methane (1), 4,4′-diamino diphenyl sulfone (2), 2,2-bis(4-(4-aminophenoxy)phenyl)propane (3), and bis(4-(4-aminophenoxy)phenyl)ether (4), respectively, as starting materials. The structures of the monomers (5-16) were confirmed by 1H, 13C, 1H-1H and 1H-13C NMR spectra. Their high performance thermosets, P(13-16), were obtained by thermal curing of benzoxazines (13-16), and their properties were studied and compared with polymer derived from bis(3,4-dihydro-2H-3-phenyl-1,3-benzoxazinyl)methane (F-a), a typical aromatic biphenol-based benzoxazine. Among the benzoxazines, 13 and F-a are constitutional isomers, but the Tg value and 5% decomposition temperature of P(13) are 53 and 111 °C, respectively, higher than those of P(F-a), demonstrating the power of the molecule-approach to enhance the thermal properties. Because of the large varieties of aromatic diamines, this approach can increase the molecule-design flexibility of benzoxazines.  相似文献   

2.
Hitoshi Hanamura 《Polymer》2011,52(23):5282-5289
Poly(silarylenesiloxane) derivatives with 4,4-dimethylcyclopenta[2,1-b:3,4-b′]dithiophene moiety, bearing dimethyl- (P1), methylphenyl- (P2) and diphenyl- (P3) substituents on silyl moieties, were prepared via polycondensation of the corresponding disilanol monomers, that is, 2,6-bis(dimethylhydroxysilyl)-4,4-dimethylcyclopenta[2,1-b:3,4-b′]dithiophene (M1), 2,6-bis(methylphenylhydroxysilyl)-4,4-dimethylcyclopenta[2,1-b:3,4-b′]dithiophene (M2), and 2,6-bis(diphenylhydroxysilyl)-4,4-dimethylcyclopenta[2,1-b:3,4-b′]dithiophene (M3), respectively. P1-P3 exhibited the good solubility in common organic solvents, such as benzene, toluene, chloroform, dichloromethane, THF, and so on. The glass transition temperatures (Tgs) of P1, P2 and P3 were determined by differential scanning calorimetry to be 56, 97 and 137 °C, respectively, depending on the substituent on the silyl moieties. No melting temperatures (Tms) of P1, P2 and P3 were observed, suggesting the obtained P1-P3 are amorphous polymers. The temperatures at 5% weight loss (Td5s) of P1, P2 and P3 were 460, 459 and 479 °C, respectively, indicating that the larger number of phenyl group on the silyl moieties resulted in the better thermostability. Bathochromic and hyperchromic effects were observed in the absorption and fluorescence spectra by introducing silyl substituents onto 4,4-dimethylcyclopenta[2,1-b:3,4-b′]dithiophene moiety. In addition, the bathochromic shift of the maximum absorption (λabs) and the increase in the fluorescence quantum yield (ΦF) were observed by the introduction of phenyl group onto the silyl moieties.  相似文献   

3.
The electrochemical study of N-tert-butoxy-2,4-diphenyl-6-tert-butylphenylaminyl (1a), N-tert-butoxy-2,4-bis(4-chlorophenyl)-6-tert-butylphenylaminyl (1b), N-[2-(methoxycarbonyl)-2-propyl]-2,4-diphenyl-6-tert-butylphenylaminyl (2), and N-tert-butoxy-2,4,6-tris(4-chlorophenyl)phenylaminyl radicals (3) was performed by cyclic voltammetry using acetonitrile as the solvent and Bu4NPF6 as the supporting electrolyte. On cathodic scan (100 mV/s), all the radicals gave chemically reversible cyclic voltammograms, and the were determined to be −1.405 V (1a), −1.310 V (2a), −1.282 V (2b), and −1.195 V (3) (versus Fc+/Fc), respectively. On anodic scan (100 mV/s), on the other hand, 1a, 1b and 2 showed chemically reversible cyclic voltammograms, but 3 exhibited a partially reversible couple even on a scan rate of 500 mV/s, indicating that the cation species of 3 was less stable. The determined for 1a, 1b, 2 and 3 were 0.220, 0.280, 0.318 and 0.294 V (versus Fc+/Fc), respectively. The electrochemical data were compared with those of thioaminyl radicals, the corresponding sulfur analogues of 1-3.  相似文献   

4.
Ruiyuan Liu  Toshio Masuda 《Polymer》2007,48(22):6510-6518
Ornithine- and lysine-based novel N-propargylamides, N-α-tert-butoxycarbonyl-N-δ-fluorenylmethoxycarbonyl-l-ornithine-N′-propargylamide (1), N-α-tert-butoxycarbonyl-N-?-fluorenylmethoxycarbonyl-l-lysine-N′-propargylamide (2), N-α-fluorenylmethoxycarbonyl-N-δ-tert-butoxycarbonyl-l-ornithine-N′-propargylamide (3), and N-α-fluorenylmethoxycarbonyl-N-?-tert-butoxycarbonyl-l-lysine-N′-propargylamide (4) were synthesized and polymerized with a rhodium catalyst. Polymers with moderate molecular weights were obtained in good yields. Poly(1)-poly(4) showed strong Cotton effects in THF, whose sign and wavelength depended on the substituents. They were satisfactorily converted into the corresponding polymers [poly(1a)-poly(4a)] with free amino groups. Poly(1a) and poly(2a) also formed a helix, while poly(3a) and poly(4a) did not. Poly(1a) and poly(2a) decreased the CD intensity by the addition of m- and o-phthalic acids.  相似文献   

5.
Melissa A Grunlan 《Polymer》2004,45(8):2517-2523
A series of 1,9-bis[glycidyloxypropyl]pentasiloxanes (IV-VI) were prepared by the platinum catalyzed hydrosilylation of 1,9-dihydridodecamethylpentasiloxane (I), 1,9-dihydrido-3,5,7-tris(3′,3′,3′-trifluoropropyl)heptamethylpentasiloxane (II), and 1,9-dihydrido-3,5,7-tris(1′H,1′H,2′H,2′H-perfluorooctyl)heptamethylpentasiloxane (III) with allyl glycidyl ether. Subsequently, IV-VI were copolymerized with piperazine to form high molecular weight copoly(carbosiloxane)s (VII-IX). The structures of the 1,9-bis[glycidyloxypropyl]penta-siloxanes (IV-VI) and copoly(carbosiloxane)s (VII-IX) were determined by 1H, 13C, 29Si, and 19F NMR as well as IR spectroscopy. The molecular weight distributions (Mw/Mn) of VII-IX have been characterized by gel permeation chromatography and their thermal properties measured by differential scanning calorimetry and thermal gravimetric analysis.  相似文献   

6.
Propylene and norbornene were copolymerized by metallocene/MAO catalysts. The organometallic compounds rac-[Me2C(Ind)2]ZrCl2 (1) and [Me2C(Cp)(Flu)]ZrCl2 (2), [Ph2C(Cp)(2,7-ditBuFlu)]ZrCl2 (3) and [Me2Si(3-tBuCp)(NtBu)]TiCl2 (4) were used to catalyze polymerization series, in which the influence of the molar fraction of norbornene in the feed and of the polymerization temperature were investigated in detail. The obtained polymers, which exhibit a wide range of properties with glass transition temperatures above 200 °C, were characterized by 13C NMR spectroscopy, differential scanning calorimetry and gel permeation chromatography techniques.In this article, the emphasis is placed on the copolymerization behaviour of the catalysts and the properties of the obtained polymers, while other articles concentrate on NMR investigations of propylene/norbornene copolymers.  相似文献   

7.
The multi-step synthesis of the novel ferrocene-substituted pyrrole monomers, N-(3-ferrocenylpropyl)pyrrole (1), and 3-(4-ferrocenylbutyl)pyrrole (2), have been studied and optimized. A single crystal X-ray structure analysis has been performed on the synthetic intermediate 3-(4-ferrocenylbutyl)-N-(triisopropylsilyl)pyrrole. Monomers 1 and 2 can be electropolymerized to form the homopolymer, poly-2, and the copolymers, pyrrole-co-1 and pyrrole-co-2. The polymers have been characterized using cyclic voltammetry, UV-visible spectroscopy, scanning electron microscopy (SEM) and four-point probe conductivity measurements. The use of pyrrole-co-1 coatings for quantitative sensing and determination of the redox-active enzyme cytochrome C in solution has been demonstrated.  相似文献   

8.
The binuclear species [1.1]ferrocenophane (1), which contains two ferrocenes (Fc) connected by methylene bridges between their respective cyclopentadienyl ligands, is well known as an electrocatalyst for the conversion of strong acids (H+) to hydrogen gas (H2). It may, however, also prospectively serve as a probe of the electronic properties of substituents attached at one of the bridging carbons. In order to study these properties, the pyrrole monomers 3-(1-[1.1]ferrocenophane-4-butyl)pyrrole (2) and 1-(3-(1-[1.1]ferrocenophane)-1-N-propyl)pyrrole (3) have been prepared using multi-step procedures. Their electroactive conducting co-polymers with pyrrole, P(Py-co-2) and P(Py-co-3) respectively, have also been prepared by electrochemical deposition. This work details the synthesis and characterisation of these monomers and their polymers. The latter have been characterised using cyclic voltammetry (CV), elemental analysis, UV-Vis spectroscopy, scanning electron microscopy (SEM) and four-point probe conductivity measurements.  相似文献   

9.
Polymerizations of various ester substituted 2,5-dichlorobenzoates [substituent: linear alkyl groups (1a-f), branched alkyl groups (1g-l), cyclohexyl groups (1m-o), phenyl groups (1p-r), and oxyethylene units (1s-v)] were investigated with Ni-catalyzed/Zn-mediated system in 1-methyl-2-pyrrolidone (NMP) at 80 °C. Most of monomers bearing linear and branched alkyl groups successfully polymerized to give relatively high-molecular-weight polymers (Mn = 10,000-20,800). However, the molecular weight of the polymer having eicocyl groups was low because of steric hindrance of long alkyl chain. The polymerizations of cyclohexyl 2,5-dichlorobenzoate and phenyl 2,5-dichlorobenzoate produced low-molecular-weight polymers, while the polymerizations of monomers with alkyl cyclohexyl and alkyl phenyl groups proceeded to afford polymers with relatively high-molecular-weights. The polymers possessing oxyethylene units were obtained, but the molecular weights were low when the oxyethylene chains were long. The gas permeability of membranes of poly(p-phenylene)s with alkyl chains increased as increasing the length of alkyl chain. The membranes of poly(p-phenylene)s with phenyl groups and oxyethylene units exhibited high densities and relatively low gas permeability. However, the CO2/N2 separation factor of membrane of poly(p-phenylene) having oxyethylene units was as large as 73.6.  相似文献   

10.
Zhen Li  Jingui Qin  Zhou Yang 《Polymer》2005,46(13):4971-4978
A new post functional strategy was developed to prepare polyphosphazenes with a high density of the indole based chromophore (nitro-indole or sulfonyl-indole chromophores) and carbazolyl side groups. Thus polyphosphazene (P1) with carbazolyl and indole groups was first prepared by direct nucleophilic substitution reaction with poly(dichlorophosphazene). Then, polyphosphazenes (P2-P4) containing charge-transporting agent (carbazolyl groups) and indole azo chromophores were synthesized via a post azo coupling reaction between P1 and p-nitrobezenediazonium fluoroborate or p-ethylsulfurylbenzenediazonium fluoroborate in N-methylpyrrolindone (NMP). The structures of P1-P4 were characterized, and the poled film of P2-4 revealed a resonant d33 values in the range of 7-26 pm/V by second harmonic generation (SHG) measurements.  相似文献   

11.
Fumio Sanda 《Polymer》2004,45(3):849-854
Polyacetylenes having carboxyl and/or amino groups in the side chain were synthesized by the polymerization of N-(2-propynyloxycarbonyl)-l-alanine (1) and l-alanine N-propargylamide (2) catalyzed with a rhodium cation complex. Poly(10.5-co-20.5) exhibited a larger CD signal than the homopolymers. The polymer mixtures obtained by the polymerization of 1 in the presence of poly(2), and those obtained by the polymerization of 2 in the presence of poly(1) showed specific rotations larger than calculated. The polymerization of propargylamine in the presence of poly(1) did not exhibit significant effect, while the polymer mixtures obtained by the polymerization of propiolic acid in the presence of poly(2) exhibited [α]D of positive sign, although poly(2) alone exhibited [α]D of negative sign.  相似文献   

12.
13.
Three novel organic dyes (SB1, SB2, and SB3) containing 4-(hexyloxy)-N-(4-(hexyloxy)phenyl)-N-phenylaniline as electron donor and cyanoacrylic acid as electron acceptor bridged by alkyloxy (methyl = SB1, propyl = SB2 and hexyl = SB3) substituted p-phenylenevinylene linkers have been synthesized. Density functional theory (DFT) has employed to study electron distribution and intramolecular charge transfer. Increase in alkyl chain length in alkyloxy substituent leads to increase in open-circuit voltage (VOC), which is found to be related to the increased electron lifetime at open-circuit condition. Under AM 1.5 G 1 sun light illumination (100 mW/cm2), an optimized SB3-sensitized cell show a short-circuit photocurrent density (JSC) of 12.83 mA/cm2, an open-circuit voltage (VOC) of 0.745 V and a fill factor (FF) of 0.64, corresponding to an overall conversion efficiency (η) of 6.12%. Little degradation in η observed over 40 days is indicative of long-term stability of the SB-series dyes.  相似文献   

14.
Vinyl-type polynorbornene copolymers with side-chain o-carborane (1-phenyl-o-carborane for P1P3; 1-methyl-o-carborane for P4) and carbazole moieties were produced by vinyl addition copolymerization of norbornene monomers using a Pd(II) catalyst in combination with 1-octene chain transfer agent. The catalytic system provided well-defined copolymers with controlled incorporation of monomers. The copolymers possessed high thermal stability with high decomposition (Td5 > 410 °C) and glass transition temperatures (Tg > 350 °C). Treatment of the closo-copolymers (P1P4) with excess KOH in refluxing EtOH/THF led to degradation of the closo-carborane cage to produce nido-copolymers (nido-(P1P4)). While P1P3 exhibited a weak carbazole-based fluorescence, the corresponding nido-copolymers gave rise to a 2.0–3.6-fold increase in PL intensity depending on the comonomer content. An electrochemical study and comparative PL results of P4 and nido-P4 suggest that photoinduced charge transfer from carbazole donors to 1-phenyl-o-carborane acceptors was responsible for the weak fluorescence of P1P3.  相似文献   

15.
Chih-Cheng Lee 《Polymer》2008,49(19):4211-4217
A series of vinyl copolymers (P1-P6) containing pendant hole-transporting triphenylamine (11-88 mol%) and carbazole chromophores were synthesized by radical copolymerization to investigate the influence of triphenylamine groups upon optoelectronic properties. The copolymers were readily soluble in common organic solvents and their weight-average molecular weights (Mws) were between 1.41 × 104 and 2.24 × 104. They exhibited moderate thermal stability with Td = 402-432 °C at 5% weight loss. The emission spectra (both PL and EL) of the blends [P1-P6 with 4 wt% Ir(ppy)3] showed dominant green emission (517 nm) attributed to Ir(ppy)3 due to efficient energy transfer from P1-P6 to Ir(ppy)3. The HOMO levels of P1-P6, estimated from onset oxidation potentials in cyclic voltammeter, were −5.42 to −5.18 eV, which are much higher than −5.8 eV of conventional poly(9-vinylcarbazole) (PVK) host owing to high hole-affinity of the triphenylamine groups. The optoelectronic performances of phosphorescent EL devices, using P1-P6 as hosts and Ir(ppy)3 as dopant (ITO/PEDOT:PSS/P1-P6:Ir(ppy)3 (4 wt%):PBD (40 wt%)/BCP/Ca/Al), were greatly improved relative to that of PVK. The best performance was obtained with P4 device, in which the maximum luminance and luminance efficiency were 11?501 cd/m2 and 10.6 cd/A, respectively.  相似文献   

16.
Tokiko Ueda 《Polymer》2011,52(16):3570-3579
The hydrosilylation polymerization of d-(−)-p-hydroxyphenylglycine-derived diethynyl monomers 1p and 1m with dihydrosilanes Si1 and Si2 was carried out using RhI(PPh3)3 as a catalyst to give optically active novel poly(silylenevinylenephenyleneethynylene)s [(E)-poly(1p-Si1), (E)-poly(1p-Si2), (E)-poly(1m-Si1), (E)-poly(1m-Si2), and (Z)-poly(1p-Si1)] with number-average molecular weights ranging from 2800 to 17,000 in 41-92% yields. Polymers having (E)- and (Z)-olefin moieties were obtained, wherein the (E)-/(Z)-ratios depended on the reaction conditions. The UV-vis absorption edge of (E)-poly(1p-Si1) was positioned at a wavelength longer than that of (Z)-poly(1p-Si1), indicating that (E)-vinylene-linkage extends the conjugation more largely than the (Z)-counterpart. This was also confirmed by fluorescence spectroscopy. Alkaline hydrolysis of ester moieties of these polymers gave the corresponding polymers having carboxy groups. The (E)-polymers showed different solubility in hydrophobic solvents before and after hydrolysis, but the non-hydrolyzed and hydrolyzed (Z)-polymers exhibited the same solubility.  相似文献   

17.
A novel cationic fluorene-containing water-soluble poly(p-phenyleneethynylene) (PPE) derivative, poly[(9,9-bis{6′-[(N,N-diethyl)-N-methylammonium]hexyl}-2,7-fluorenyleneethynylene)-alt-co-(2,5-bis{3′-[(N,N-diethyl)-N-methylammonium]-1′-oxapropyl}-1,4-phenylene)] tetraiodide (P1′), was synthesized through Sonogashira reaction and a post-polymerization treatment. P1′ emits bright blue fluorescence in H2O with a high photoluminescence quantum yield (Φpl=26%). Studies on the optical properties and quenching experiments with in H2O and MeOH show that P1′ presents minor aggregation and high Stern-Volmer constant (Ksv=2.4×108 M−1) in aqueous solution. The remarkably reduced tendency towards aggregation, relative to previously reported water-soluble PPEs, made the optical properties of P1′ almost insensitive to the disturbance from the common ions (non-quencher) in the solution.  相似文献   

18.
A series of new titanium isopropoxide complexes (1-4-Ti(OiPr)2 based on enantiopure (1-H2), racemic (2-H2), meso (3-H2) and diastereomeric (4-H2) aminodiol ligands have been prepared and tested as initiators for the ring opening polymerization (ROP) of l/rac-lactide in solution and in bulk conditions. All complexes were shown to have significant activity in solution at 70 °C and higher activity in bulk at 130 °C with a good control over the molar mass distribution and molecular weights. The complex derived from the racemic-aminodiol ligand gave partially heterotactic polylactide in ROP of rac-lactide and afforded atactic polylactide in the bulk, whereas all other complexes yielded atactic polylactides both in solution and in bulk. Ligand variation (chirality) in the complexes has little effect on either the activity or selectivity of the initiators. The polymerization kinetics using (1-Ti(OiPr)2) as an initiator indicated a first order reaction with respect to the monomer concentration.  相似文献   

19.
Novel regioselective, homo-(4-6) and heterogeneous (7-10) dendronized cellulose derivatives have been prepared by the reaction of cellulose in a N,N-dimethylacetamide (DMAc)/LiCl solvent system with diverse dendrons (1-3) possessing an isocyanate focal group. The dendronized cellulose derivatives were characterized using Fourier transform infrared (FTIR), 13C NMR, thermogravimetric analysis (TGA), and dynamic mechanical thermal analysis (DMTA). These polyfunctionally coated cellulose-based materials showed diverse solubility characteristics in organic solvents ranging from DMAc to methyl alcohol.  相似文献   

20.
Polymers P-1, P-2, P-3, P-4 and P-5 were synthesized by the polymerization of 5,8-bis(ethynyl)isoquinoline (M-1) with (R)-3,3′-diiodo-2,2′-bisbutoxy-1,1′-binaphthyl ((R)-M-2), (S)-3,3′-diiodo-2,2′-bisbutoxy-1,1′-binaphthyl ((S)-M-2), (R)-6,6′-dibromo-2,2′-bisbutoxy-1,1′-binaphthyl ((R)-M-3), (S)-6,6′-dibromo-2,2′-bisbutoxy-1,1′-binaphthyl ((S)-M-3), and rac-6,6′-dibromo-2,2′-bisbutoxy-1,1′-binaphthyl (M-4) under Sonogashira reaction, respectively. Both monomers and polymers were analyzed by NMR, MS, FT-IR, UV-vis spectroscopy, DSC-TGA, fluorescence spectroscopy, GPC and circular dichroism (CD) spectroscopy. CD spectra of polymers P-1 and P-2, P-3 and P-4 are almost identical except that they gave opposite signals at each wavelength. The long wavelength CD effect of P-1 and P-2 can be regarded as the more extended conjugated structure in the repeating unit and the helical backbone in the polymer chain. All five polymers have strong blue-green fluorescence due to the efficient energy migration from the extended π-electronic structure of the repeating unit of the polymers to the chiral binaphthyl core and are expected to provide understanding of structure-property relationships of the chiral conjugated polymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号