首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The need for recycling of polymeric waste has been well recogmized as a result of the escalating prices of the petrochemical feedstocks and the growing awareness to curtail solid waste that causes environmental pollution. During processing, the molecular weight of the polymer is reduced due to thermal and shear degradation. Since the melt rheology of the processed material is sensitive to the changes in molecular structure, knowledge of the complete flow curve depicting the variation of melt viscosity with shear rate at processing temperatures is a useful tool for assessing the reprocessibility of waste material and for specifying the conditions of reprocessing. In the present paper, an effective method is proposed to generate the melt flow curves of polymer waste from knowledge of its melt flow index. The method makes use of a master curve that can be obtained by plotting the available viscosity data in terms of modified functions based on the melt flow index. The master curves characteristic of the particular generic resin type are presented for low-density polyethylene, polypropylene and polystyrene.  相似文献   

3.
Layer melt crystallization was applied for the dry fractionation of multi-component mixtures using coconut oil as a model substance. The aim of the experiments was to optimize the crystallization parameters (e.g. crystallization temperature, melt temperature, cooling rate, agitation speed) in order to obtain the solid fraction with a higher melting temperature and solid fat properties. The isothermal crystallization behavior of coconut oil was investigated via differential scanning calorimetry (DSC). The efficiency of the crystallization process was monitored by determining the melting point and solid fat content (SFC) of the fractionated products. The morphology of crystal layer was studied by a light microscope. Cool finger temperature was found to have the greatest impact on product properties. Applying a cooling rate of 0.2 K/h resulted in sufficient growth rates providing the required products. The micrographs of the solid fraction revealed lamellar particle arrangement compared to coconut oil possessing spherulites.  相似文献   

4.
5.
As discussed in this paper, melt treatment prior to crystallization, apparently proceeds by the following stages: partial melting; an insensitive region; and at higher temperatures, deactivation of nucleation sites. The deactivation-region onset temperature is quite dependent on the subsequent crystallization conditions and may not be observed in some polymers during crystallization from the melt. In addition, those polymers capable of being quenched directly from the melt to a non-crystalline glassy state and subsequently crystallized by reheating to above the glass transition, do not exhibit any more than a partial melting type melt treatment effect. The deactivation regime absence is a result of the homogeneous nucleation that occurs during crystallization from the quenched glassy state at temperatures slightly above the glass transition. Use of a metal- or glass-constraining medium does mask (at least partially) the effect of melt history upon crystallization from the melt. In addition to the masking effect of a constraining medium, some of the controversy in the literature pertaining to the existence of a melt treatment phenomenon may arise due to degredation of some polymers prior to the onset of the deactivation regime. The crystallization conditions employed are also quite influential on the possible effect melt treatment can have since the melt history phenomenon is noted by its effect on subsequent crystallization.  相似文献   

6.
Shape memory effect (SME) is critical for minimally invasive surgical procedures in medicine. In this paper, the shape memory behavior of amorphous biodegradable polymer, poly(d,l-lactide-co-glycolide), is experimentally investigated. Based on the experimental observations and the understanding of the underlying mechanism of SME, a one-dimensional constitutive model is derived to describe the shape memory behavior in the context of (1) the stress-strain behavior in deformation, (2) the isothermal recovery and (3) the recovery at constant heating rate, by using a set of model constants. By fine tuning the model constants, a good agreement between the experimental results and computer predictions was achievable.  相似文献   

7.
Takashi Yamamoto 《Polymer》2004,45(4):1357-1364
Molecular pathways to polymer crystallization and the structures of crystal-melt interfaces are investigated by molecular dynamics simulation. We adopt a simplified molecular model for polymethylene-like chains; the chain is made of CH2-like beads connected by harmonic springs, and the lowest energy conformation is a linear stretched sequence of the beads with slight bending stiffness being imposed. Two molecular systems are considered, one is made of 640 chains of C100 and the other is made of 64 chains of C1000, both being placed between two parallel substrates that represent the growth surfaces of the lamellae growing toward each other. The initial melt kept at a sufficiently high temperature above the melting point is rapidly cooled down to various crystallization temperatures, and the molecular processes of crystallization that follow are investigated. In both systems, we clearly observe the growth of stacked chain-folded lamellae from the substrates. The growing lamellae have a definite tapered shape, and they show marked thickening growth along the chain axis as well as usual growth perpendicular to it. The overall crystallization rate is found to be very sensitive to the crystallization temperature, showing an apparent maximum around 320-330 K for C100. We find that the lamellae do not grow keeping pace with each other but grow in independent rates especially at higher temperatures. We also examine the structures of the lateral growth surfaces and find that the growth surfaces are locally flat and the Kossel mechanism of crystal growth seems to be operative. In addition, the fold surfaces are found to be covered with relatively short chain-folds; at least about 60-70% of the folds are connecting the nearest or the next nearest neighbor crystalline stems. No appreciable bond orientational order is found in the undercooled melt of C100 and C1000.  相似文献   

8.
The addition of multi-walled carbon nanotubes (MWCNTs) or carbon nanofibers (CNFs) to polymeric melts offers a convenient route to obtain highly conductive plastics. However, when these materials are melt processed, their conductivity can be lost. Here, it is shown that conductivities can be recovered through melt annealing at temperatures above the polymer's glass transition temperature (Tg). We demonstrate these results for both MWCNT and CNF-based composites in polystyrene (PS). The mechanism behind the conductivity increase is elucidated through modeling. It involves a transition from aligned, unconnected particles prior to annealing to an interconnected network after annealing through viscoelastic relaxation of the polymer. Such re-arrangement is directly visualized for the case of the CNF-based composites using confocal microscopy. The annealing-induced increase in particle connectivity is also reflected in dynamic rheological measurements on both MWCNT and CNF composites as an increase in their elastic moduli at low frequencies.  相似文献   

9.
Isothermal melt spinning experiments have been conducted using two polyethylene melts of low density (LDPE) and high density (HDPE) to produce steady state spinline profiles. The data revealed the threadline extensional viscosity exhibiting a contrasting picture : extension thickening behavior for LDPE and extension thinning one for HDPE. A White-Metzner model having a strain rate-dependent relaxation time was then found to be able to simulate this dichotomy in melt spinning fairly well: the fluids whose relaxation times have smaller strain rate-dependence can fit LDPE data with extension thickening extensional viscosity whereas the fluids whose relaxation times have larger strain rate-dependence can fit HDPE data with extension thinning extensional viscosity. This dichotomous nature of viscoelastic fluids is also believed to be able to explain other similar contrasting phenomena exhibited by polymer melts, such as vortex/no vortex in entry flows, cohesive/ductile fracture modes in extension, and more/less stable draw resonance than Newtonian fluids.  相似文献   

10.
Valery P. Privalko 《Polymer》1978,19(9):1019-1025
Analysis of spherulitic growth rate data for a number of linear polymers has shown that the temperature at maximum growth rate, T1, is related to the glass transition temperature, Tg, through the empirical equation, T1 = 1.26 Tg. The universal master curve for the temperature dependence of the growth rate of crystals from the melt in reduced Gandica—Magill coordinates, ln(GG1) = f(T ? T)(Tm ? T), is possible only on the condition that the following empirical equation holds: 0.26 = TTg ? TTm. Finally, limits of variation of the ‘conformational’ contribution to the excess entropy, and of the free volume fraction at T1 were evaluated for some polymers.  相似文献   

11.
《Ceramics International》2023,49(3):4686-4694
Electropulsing treatment (EPT) is a promising technology for controlling the phase transition during the solidification of melts owing to its electric and thermal effects. In this study, the influence of EPT on the crystallization and melt structure of a calcium silicate-based mold flux was investigated. The results showed that the morphology of crystals that precipitated in the mold flux changed from elongated columnar to block shape, and the equivalent grain diameter of the crystals increased with increasing voltage from 0 to 20 V. The mass fraction of Ca4Si2O7F2 precipitated in the mold flux decreased with increasing impulse voltage, whereas that of Ca2Mg0.75Al0.5Si1.75O7 increased. Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) analyses suggest that the network structure of both silicate and aluminate was simplified by electropulsing because the simpler structural units of Q0, Q1, [AlO6]9+, etc., increased with increasing impulse voltage, whereas the complex structural units of Q2, Q3, and [AlO4]5+ decreased. The extra electric field force is the repulsion force between two oppositely charged ions, which was the root of the network structure simplification and crystallization promotion. The results obtained in this study provide an innovative method for locally controlling the crystallization behavior of mold flux in a mold.  相似文献   

12.
We show that the phase behavior of the strongly segregated blend consisting of a crystalline-amorphous diblock copolymer (C-b-A) and an amorphous homopolymer (h-A), which depends on the degree of wetting of A blocks by h-A, can be probed by the crystallization kinetics of the C block. A lamellae-forming poly(ethylene oxide)-block-polybutadiene (PEO-b-PB) was blended with PB homopolymers (h-PB) of different molecular weights to yield the blends exhibiting ‘wet brush’, ‘partially dry brush’, and ‘dry brush’ phase behavior in the melt state. The crystallization rate of the PEO blocks upon subsequent cooling, as manifested by the freezing (crystallization) temperature (Tf), was highly sensitive to the morphology and spatial connectivity of the microdomains governed by the degree of wetting of PB blocks. As the weight fraction of h-PB reached 0.48, for instance, Tf experienced an abrupt rise as the system entered from the wet-brush to the dry-brush regime, because the crystallization in the PEO cylindrical domains in the former required very large undercooling due to a homogeneous nucleation-controlled mechanism while the process could occur at the normal undercooling in the latter since PEO domains retained lamellar identity with extended spatial connectivity. Our results demonstrate that as long as the C block is present as the minor constituent the melt phase behavior of C-b-A/h-A blends can also be probed using a simple cooling experiment operated under differential scanning calorimetry (DSC).  相似文献   

13.
Shape memory alloys (SMAs) are well known for their unique shape memory effect (SME) and superelasticity (SE) behavior. The SME and SE have been extensively investigated in past decades due to their potential use in many applications, especially for smart materials. The unique effects of the SME and SE originate from martensitic transformation and its reverse transformation. Apart from the SME and SE, SMAs also exhibit a unique property of memorizing the point of interruption of martensite to parent phase transformation. If a reverse transformation of a SMA is arrested at a temperature between reverse transformation start temperature (A s) and reverse transformation finish temperature (A f), a kinetic stop will appear in the next complete transformation cycle. The kinetic stop temperature is a ‘memory’ of the previous arrested temperature. This unique phenomenon in SMAs is called temperature memory effect (TME). The TME can be wiped out by heating the SMAs to a temperature higher than A f. The TME is a specific characteristic of the SMAs, which can be observed in TiNi-based and Cu-based alloys. TME can also occur in the R-phase transformation. However, the TME in the R-phase transformation is much weaker than that in the martensite to parent transformation. The decrease of elastic energy after incomplete cycle on heating procedure and the motion of domain walls have significant contributions to the TME. In this paper, the TME in the TiNi-based and Cu-based alloys including wires, slabs and films is characterized by electronic-resistance, elongation and DSC methods. The mechanism of the TME is discussed.  相似文献   

14.
Melt fracture, shear viscosity, extensional viscosity, and die swell of two polypropylene resins were studied using a capillary rheometer. A modified Bagley plot with consideration of pressure effects on melt viscosity and end effect was used. From the true wall shear stress the shear viscosity was calculated. Extensional viscosity was calculated from the end effect. Both shear and extensional viscosities of different molecular weights and temperatures correlated well under the time-temperature Williams-Landel-Ferry (WLF) superposition. Die swell increased when shear stress increased, and was higher for shorter dies at a given shear rate. When shear rates increased the extrudate staged from smooth to gross melt fracture with regular patterns (spurt), and then turned into irregular shapes. In the regular stage the wavelength of extrudates was measured, and corresponding frequency was calculated. The frequency increased when molecular weight decreased and when melt temperature increased. The shift factor based on shear viscosity also brought frequency data of different molecular weights and temperatures into master curves. The frequency decreased slightly when die lengths increased from L/R=10 to 60. A small maximum was observed when shear rates increased.  相似文献   

15.
Heng Zhang  Qiangguo Du 《Polymer》2009,50(6):1596-393
A novel styrene-butadiene-styrene tri-block copolymer (SBS) and poly(?-caprolactone) (PCL) blend were introduced for its shape memory properties. Compared to the reported shape memory polymers (SMPs), this novel elastomer and switch polymer blend not only simplified the fabrication process but also offer a controllable approach for the study of mechanisms and the optimization of shape memory performances. Microstructures of this blend were characterized by differential scanning calorimetry (DSC), AFM microscope observation and tensile test. DSC results demonstrated the immiscibility between SBS and PCL. AFM images and stress-strain plot further confirmed the two-phase morphology within the blend. It was found that the SBS and PCL continuous phases contributed to the shape recovery and shape fixing performances, respectively. A detailed shape memory mechanism for this type of SMP system was then concluded and an optimized SMP system with both good recovery and fixing performances was designed from this mechanism.  相似文献   

16.
17.
C. Hertlein  G. Strobl 《Polymer》2006,47(20):7216-7221
The free induction decay in 1H NMR experiments carried out for crystallizing polymers can be directly decomposed in contributions from crystals, melt-like regions and amorphous regions with a reduced mobility. Here, the results of time-dependent experiments conducted with the aid of a cost-efficient low-field NMR instrument are presented, obtained for sPP, P?CL and P(EcO). Crystallization isotherms are compared with those obtained by X-ray scattering and dilatometry. There are some minor systematic deviations which can be explained and accounted for. For all systems, a large fraction of amorphous chain parts in regions with a reduced mobility is found.  相似文献   

18.
A high-pressure polar light microscopy approach was proposed and developed to study the melt crystallization behaviors of myristic acid and ibuprofen respectively in CO2 at different pressures and crystallization temperatures. The crystallization kinetics was analyzed by the Avrami equation. Results revealed that the crystallization rates of both myristic acid and ibuprofen increased with the CO2 pressure, while the crystallization activation energy of ibuprofen decreased (more negative) with the increase of CO2 pressure. On the other hand, the crystallization rate of ibuprofen decreased with the increase of the crystallization temperature at fixed pressure. However, the presence of CO2 did not change the nucleation or growth patterns of myristic acid and ibuprofen, as indicated by the analyzed results of the Avrami equation. The X-ray diffraction (XRD) analysis further confirmed that CO2 had no influence on the crystal form of myristic acid or ibuprofen. This study revealed that the crystallization behaviors of myristic acid and ibuprofen were evidently different from those of polymers in CO2 reported in the literature.  相似文献   

19.
Recent advances in polymer shape memory   总被引:1,自引:0,他引:1  
Tao Xie Author Vitae 《Polymer》2011,52(22):4985-5000
Traditional shape memory polymers (SMPs) are those capable of memorizing a temporary shape and recovering to the permanent shape upon heating. Although such a basic concept has been known for half a century, recent progresses have challenged the conventional understanding of the polymer shape memory effect and significantly expanded the practical potential of SMPs. In this article, notable recent advances in the field of SMPs are highlighted. Particular emphasis is placed on how the new developments have changed the conventional view of SMPs, what they mean for practical applications, and where the future opportunities are.  相似文献   

20.
Edem Wornyo  Ken Gall  Fuzheng Yang 《Polymer》2007,48(11):3213-3225
This work examines the small-scale deformation and thermally induced recovery behavior of shape memory polymer networks as a function of crosslinking structure. Copolymer shape memory materials based on diethylene glycol dimethacrylate and polyethylene glycol dimethacrylate with a molecular weight of 550 crosslinkers and a tert-butyl acrylate linear chain monomer were synthesized with varying weight percentages of crosslinker from 0 to 100%. Dynamic mechanical analysis is used to acquire the bulk thermomechanical properties of the polymers, including the glass transition temperature and the elastic modulus over a wide temperature range. Instrumented nanoindentation is used to examine ambient temperature deformation of the polymer networks below their glass transition temperature. The glassy modulus of the networks measured using nanoindentation is relatively constant as a function of crosslinking density, and consistent with values extracted from monotonic tensile tests. The ambient temperature hardness of the networks increases with increasing crosslinking density, while the dissipated energy during indentation decreases with increasing crosslinking density. The changes in hardness correlated with the changes in glass transition but not changes in the rubbery modulus, both of which can scale with a change in crosslink density. Temperature induced shape recovery of the indentations is studied using atomic force microscopy. For impressions placed at ambient temperature, the indent shape recovery profile shifts to higher temperatures as crosslink density and glass transition temperature increase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号