首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(γ-benzyl l-glutamate)-block-poly(l-phenylalanine) was prepared via the ring opening polymerization of γ-benzyl l-glutamate N-carboxyanhydride and l-phenylalanine N-carboxyanhydride using n-butylamine·HCl as an initiator for the living polymerization. Polymerization was confirmed by 1H-nuclear magnetic resonance spectroscopy and matrix assisted laser desorption ionization time of flight mass spectroscopy. After deprotection, the vesicular nanostructure of poly(l-glutamic acid)-block-poly(l-phenylalanine) particles was examined by transmission electron microscopy and dynamic light scattering. The pH-dependent properties of the nanoparticles were evaluated by means of ζ-potential and transmittance measurements. The results showed that the block copolypeptide could be prepared using simple techniques. Moreover, the easily prepared PGA-PPA block copolypeptide showed pH-dependent properties due to changes in the PGA ionization state as a function of pH; this characteristic could potentially be exploited for drug delivery applications.  相似文献   

2.
Anirban Sen Gupta 《Polymer》2004,45(14):4653-4662
Starting from the natural amino-acid l-tyrosine, a diphenolic monomeric molecule was developed using carbodiimide mediated solid-phase synthesis techniques. This monomeric molecule was polymerized by reacting it in equimolar proportions with suitable dihalophosphates to yield novel biodegradable polyphosphates containing peptide linkages and phosphoester linkages alternating in the polymer backbone. The biodegradability of such a polymer is expected to arise from the hydrolytic degradability of the phosphoester linkages and the enzymatic degradability of the peptide linkages in the polymer backbone. Design of such a polymer is expected to make a significant contribution to biomaterials research, regarding drug delivery device and tissue engineering scaffold applications. The monomer was obtained by a novel solid phase carbodiimide-mediated amide coupling process. The subsequent polymers were obtained by solution-phase dehydrochlorination polycondensation reactions in the presence of a suitable acid acceptor. The synthesized polymers were characterized by 13C NMR, 31P NMR and FTIR for their chemical structure, by GPC for their molecular weight distribution, and by DSC and TGA for their thermal transition characteristics.  相似文献   

3.
The results of investigations of phase behaviour in the systems l-lactic acid based polymers + carbon dioxide at high pressures are presented. The measurements have been performed in wide temperature and composition ranges. Two samples of the polymer differing in molecular weight (Mn: 1080 and 3990 g/mol) have been investigated. Both samples of the polymer were characterized with the gel permeation chromatography and NMR spectroscopy. The influence of the structure of the polymer on the solubility in supercritical carbon dioxide has been discussed. The results obtained suggest that the solubility of low molecular weight l-lactic acid based polymers in supercritical carbon dioxide is not controlled by its size, but to a large extent by the character of its terminal groups. The phase behaviour in the system l-lactic acid + carbon dioxide has been also investigated and the results were compared with those for the systems composed of l-lactic acid based polymers and carbon dioxide.  相似文献   

4.
Yanan Yang  Jing Cai  Xiuli Zhuang  Xiabin Jing 《Polymer》2010,51(12):2676-2549
A novel biodegradable AB-type diblock copolymer poly(L-lactic- co-glycolic acid)-block-poly(l-glutamic acid) (PLGA-b-PGA) was synthesized by a macromolecular coupling reaction between carboxyl-terminated PLGA and amino-terminated poly(γ-benzyl-glutamate) (PBLG) and the subsequent elimination of the protecting benzyl group. The structures of PLGA-PGA and its precursors were confirmed by Fourier transform infrared spectroscopy (FT-IR), 1H nuclear magnetic resonance (1H NMR) spectroscopy and gel permeation chromatography (GPC). This synthetic strategy simplified a former synthesis process of polypeptide-poly(l-lactic acid)(PLA); by using this new synthetic route the molecular weight and block ratio of PLGA-PGA could be easily controlled by adjusting the chain length of PLGA/PGA. The pH sensitivity and self-assembly behavior of PLGA-PGA copolymer were investigated by environmental scanning electron microscopy (ESEM), transmission electron microscopy (TEM) and dynamic light scattering (DLS). The results showed that the copolymer exhibited high pH responses, and the morphologies of the copolymer aggregates underwent four stages orderly with the pH increase (pH = 3-9): a disorganized form, micelles, semi-vesicles with thick walls and vesicles. Such a pH-dependent self-assembly process of the copolymer is promising for drug control release and bio-applications.  相似文献   

5.
Ester Zuza 《Polymer》2008,49(20):4427-4432
The segmental dynamics of polylactide chains covering the Tg − 30 °C to Tg + 30 °C range was studied in absence and presence of a crystalline phase by dynamic mechanical analysis (DMA) using the framework provided by the WLF theory and the Angell's dynamic fragility concept. An appropriate selection of stereoisomers combined with a thermal conditioning strategy to promote crystallization (above Tg) or relaxation of chains (below Tg) was revealed as an efficient method to tune the ratio of the rigid and mobile amorphous phases in polylactides. A single bulklike mobile amorphous phase was taken for poly(d,l-lactide) (PDLLA). In turn three phases, comprising a mobile amorphous fraction (MAF, XMA), a rigid amorphous fraction (RAF, XRA) and a crystalline fraction (Xc) were determined in poly(l-lactide) (PLLA) by modulated differential scanning calorimetry (MDSC) according to a three-phase model. The analysis of results confirms that crystallinity and RAF not only elevate the Tg and the breadth of the glass transition region but also yields an increase in dynamic fragility parameter (m) which entails the existence of a smaller length-scale of cooperativity of polylactide chains in confined environments. Consequently it is proposed that crystallinity is acting in polymeric systems as a topological constraint that, preventing longer range dynamics, provides a faster segmental dynamics by the temperature dependence of relaxation times according to the strong-fragile scheme.  相似文献   

6.
Eamor M. Woo  Ling Chang 《Polymer》2011,52(26):6080-6089
Crystallization of nonequimolar compositions of poly(d-lactic acid) with low-molecular-weight poly(l-lactic acid) (PDLA/LMw-PLLA) blends leads to formation of various fractions of stereocomplexed PLA (sc-crystallites) and homocrystallites (PDLA or PLLA). For the PDLA/LMw-PLLA blends within the composition window of LMw-PLLA content between 30 and 50 wt%, only sc-crystal exists and no homocrystal is present. On the other hand, for PDLA/LMw-PLLA blends with excess PDLA, e.g. PDLA/LMw-PLLA = 90/10, atomic-force microscopy (AFM) characterization on various stages of crystallization of sc-PLA crystal with PDLA homocrystal shows a repetitive stacking of excess PDLA on pre-formed sc-PLA crystal serving as crystallizing templates. The crystallization initially begins with string-like (fibril-like) PDLA lamellae, followed with PDLA aggregating on sc-PLA crystal into a bead-on-string crystal, then growing to thicker irregularly-shaped dough-like lamellae. Repetitive growth cycle from strings to bead-on-string lamellae continues on top of the dough-like lamellae as new substrates, until ending impingement of the PDLA spherulites.  相似文献   

7.
Fractionated samples of d,l-poly(lactic acid) (PLA) were prepared and the dielectric normal mode relaxation was studied for dilute and semi-dilute solutions of the PLA in a good solvent benzene. Results indicate that in the dilute regime the normal mode relaxation time is proportional to [η]Mw in agreement with the Rouse-Zimm theory, where [η] and Mw denote the intrinsic viscosity and weight average molecular weight, respectively. The dielectric relaxation strength which is proportional to the mean square end-to-end distance 〈r2〉 increases with increasing Mw with the power of 2ν, where ν is the excluded volume parameter determined from [η]. The relaxation time in the semi-dilute regime increases with increasing concentration C due to increases of the entanglement density and the friction coefficient. The relaxation time corrected to the iso-friction state agrees approximately with the dynamic scaling theories. The relaxation strength decreases with increasing concentration indicating that 〈r2〉 decreases on account of the screening of the excluded volume effect. The concentration dependence of 〈r2〉 agrees approximately with the scaling theory proposed by Daoud and Jannink.  相似文献   

8.
Géraldine Rohman 《Polymer》2007,48(24):7017-7028
The use of semi-hydrolyzable oligoester-derivatized interpenetrating polymer networks (IPNs) as nanostructured precursors provides a straightforward and versatile approach toward mesoporous networks. Different poly(d,l-lactide) (PLA)/poly(methyl methacrylate) (PMMA)-based IPNs were synthesized by resorting to the so-called in situ sequential method. The PLA sub-network was first generated from a dihydroxy-telechelic PLA oligomer via an end-linking reaction with Desmodur® RU as a triisocyanate cross-linker. Subsequently, the methacrylic sub-network was created by free-radical copolymerization of methyl methacrylate (MMA) and a dimethacrylate (either bisphenol A dimethacrylate or diurethane dimethacrylate) with varying compositions (initial MMA/dimethacrylate composition ranging from 99/1 to 90/10 mol%). Both cross-linking processes were monitored by real-time infrared spectroscopy. The microphase separation developed in IPN precursors was investigated by differential scanning calorimetry (DSC). Furthermore, the quantitative hydrolysis of the PLA sub-network, under mild basic conditions, afforded porous methacrylic structures with pore sizes ranging from 10 to 100 nm -at most- thus showing the effective role of cross-linked PLA sub-chains as porogen templates. Pore sizes and pore size distributions were determined by scanning electron microscopy (SEM) and thermoporometry via DSC measurements. The mesoporosity of residual networks could be attributed to the good degree of chain interpenetration associated with both sub-networks in IPN precursors, due to their peculiar interlocking framework.  相似文献   

9.
The reaction of (R,R)-trans-1,2-bis(2,4,6-triisopropylbenzenesulfonamidato)cyclohexane (RRTBSC-H2, 1) with MN[Si(CH3)3] in tetrahydrofuran (THF) produces [(RRTBSC)2M4(THF)4] (2: M = Li, 3: M = Na, 4: M = K). Experimental results show that all three complexes 2-4 are active toward the ring-opening polymerization of l-lactide and compound 2 efficiently catalyzes the polymerization of l-lactide in the presence of a variety of alcohols in a controlled fashion with very narrow polydispersity index. In addition, a variety of biodegradable poly(l-lactide)-block-poly(Nξ-carbobenzyloxy-l-lysine) block copolymers with different ratios have also been synthesized using poly(l-lactide) containing amino chain end (PLLA-NH2) as a macroinitiator.  相似文献   

10.
The spherulite growth behavior and mechanism of l-lactide copolymers, poly(l-lactide-co-d-lactide) [P(LLA-DLA)], poly(l-lactide-co-glycolide) [P(LLA-GA)], and poly(l-lactide-co-ε-caprolactone) [P(LLA-CL)] have been studied using polarization optical microscopy in comparison with poly(l-lactide) (PLLA) having different molecular weights to elucidate the effects of incorporated comonomer units. The incorporation of comonomer units reduced the radius growth rate of spherulites (G) and increased the induction period of spherulite formation (ti), irrespective of the kind of comonomer unit. Such effects became remarkable with the content of comonomers. At a crystallization temperature (Tc) of 130 °C, the disturbance effects of comonomers on the spherulite growth decreased in the following order: d-lactide>glycolide>ε-caprolactone, when compared at the same comonomer unit or reciprocal of averaged l-lactyl unit sequence length (ll). The ti estimation indicated that the glycolide units have the lowest disturbance effects on the formation of spherulite (crystallite) nuclei. The PLLA having the number-average molecular weight (Mn) exceeding 3.1×104 g mol−1 showed the transition from regime II to regime III at Tc=120 °C, whereas PLLA with the lowest Mn of 9.2×103 g mol−1 crystallized solely in regime III kinetics and the copolymers excluding P(LLA-DLA) with 3% of d-lactide units crystallized solely according to regime II kinetics. The nucleation and front constant for regime II and III [Kg(II), Kg(III), G0(II), and G0(III), respectively] estimated with each (not with a fixed for high-molecular-weight PLLA) decreased with increasing the amount of defects per unit mass of the polymer for crystallization, i.e. with increasing the comonomer content and the density of terminal group through decreasing the molecular weight.  相似文献   

11.
A novel cytocompatible graft copolymer of chitosan and l-lactic acid (CL) was prepared by grafting l-lactic acid onto the amino groups in chitosan without a catalyst. The structures of the CL graft copolymers were characterized by FTIR, 13C-NMR and X-ray measurements. Degree of substitution and side-chain length were evaluated from salicylaldehyde and elemental analysis. The tensile strength and water uptake of the CL copolymers films were investigated as a function of feed ratio of LA/CS. The influence of pH on the swelling behavior of the copolymer films was determined and interpreted. Fibroblast culture was performed to evaluate cell proliferation on the copolymers films. The results showed that the cell growth rate on the copolymers films is faster than chitosan obviously.  相似文献   

12.
Aligned nanofibrous blends of poly (d, l-lactide-co-glycolide) (PLGA) and collagen with various PLGA/collagen compositions (80/20, 65/35 and 50/50) were fabricated by electrospinning and characterized for bone tissue engineering. Morphological characterization showed that the addition of collagen to PLGA resulted in narrowing of the diameter distribution and a reduction in average diameter. Differential scanning calorimetric (DSC) studies showed that the triple helix structure of the native collagen was not destroyed during the fabrication process. However, the blending had a marked effect on the overall enthalpy of the blends, whereby the total enthalpy decreased as the collagen content decreased. Thermogravimetric analysis showed the addition of collagen increased the hydrophilicity of the scaffolds. The crosslinking of collagen to increase the biostability was done using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) in ethanol and an overall ∼25% degree of crosslinking was achieved. The EDC crosslinking had little effect on the nanofibrous morphology of the 80/20 blend system; however, the nanofibrous features were compromised to some extent at higher collagen concentrations. The mechanical characterization under dry and wet conditions showed that increasing collagen content resulted in a tremendous decrease in the mechanical properties. However, crosslinking resulted in the increase in elastic modulus from 47 MPa to 83 MPa for the wet PLGA/Collagen 80/20 blend system, with little effect on the tensile strength. In conclusion, the aligned nanofibrous scaffold used in this study constitutes a promising material for bone tissue engineering.  相似文献   

13.
To clarify the melting behavior of poly(l-lactic acid) (PLLA), the wide-angle X-ray diffraction patterns of the isothermally crystallized PLLA samples (ICSs) were successively obtained during heating. We have already suggested the discrete change in the crystallization behavior of PLLA at a crystallization temperature (Tc) of 113 °C (= Tb) and formation of two crystal modifications for the ICSs obtained in the temperature range Tc ≤ Tb and Tc ≥ Tb. It was elucidated from the change in the X-ray diffraction pattern that the phase transition from the low-temperature crystal modification (α′-form) to the high-temperature one (α-form) occurred in a range 155-165 °C for the ICSs(Tc ≤ Tb), and that the crystal structure for the ICSs(Tc ≥ Tb) did not change. Recrystallization during heating, which is the origin of the multiple melting behavior, was proved by the increase in the diffraction intensity before steep decrease due to the final melting. A temperature derivative curve of the X-ray diffraction intensity almost coincided with the DSC melting curve.  相似文献   

14.
Mohammad K. Hassan 《Polymer》2007,48(7):2022-2029
Broadband dielectric spectroscopy was used to examine carboxylic acid-terminated poly(d,l-lactide) samples that were hydrolytically degraded in 7.4 pH phosphate buffer solutions at 37 °C. The dielectric spectral signatures of degraded samples were considerably more distinct than those of undegraded samples and a Tg-related relaxation associated with long range chain segmental mobility was seen. For both degraded and undegraded samples, a relaxation peak just beneath a DSC-based Tg was observed, which shifts to higher frequency with increasing temperature. Thus, this feature is assigned as the glass transition as viewed from the dielectric relaxation perspective. Linear segments on log-log plots of loss permittivity vs. frequency, in the low frequency regime, are attributed to d.c. conductivity. An upward shift in relaxation peak maximum, fmax, observed especially after 145 d of immersion in buffer, implies a decrease in the time scale of long range segmental motions with increased degradation time.Permittivity data for degraded and undegraded materials were fitted to the Havriliak-Negami equation with subtraction of the d.c. conductivity contribution to uncover pure relaxation peaks. Parameters extracted from these fits were used to construct Vogel-Fulcher-Tammann-Hesse (VFTH) curves and distribution of relaxation time, G(τ), curves for all samples. It was seen that the relaxation times for the α-transition in both degraded and undegraded samples showed VFTH temperature behavior. G(τ) curves showed a general broadening and shift to lower τ with degradation, which can be explained in terms of a broadening of molecular weight within degraded samples and faster chain motions.  相似文献   

15.
Anirban Sen Gupta 《Polymer》2005,46(7):2133-2140
Since their introduction by Kohn and Langer et al. in 1984, l-tyrosine based ‘pseudo’ poly(amino acids) have undergone extensive research in the area of polymeric biomaterials. Starting from l-tyrosine based diphenolic monomers, polyiminocarbonates, polycarbonates and polyarylates have been developed by Kohn and co-workers and are being investigated for potential orthopedic biomaterial applications. Mao et al. have reported development of l-tyrosine based polyphosphates and polyphosphonates in a patent, however, detailed structural and physico-chemical characterization studies on such polymers have not been reported yet. For the purpose of the current paper, using a novel solid phase process for synthesis of l-tyrosine based diphenolic monomers and adapting the polymerization process described by Mao et al., l-tyrosine based polyphosphates were developed and investigated for their pertinent bioengineering properties. The properties investigated consist of chemical solubility, hydrophilicity and hydrolytic degradation. The results of this investigation are crucial to validate further investigation of biomaterial applications of these polymers.  相似文献   

16.
Yuushou Nakayama  Kenta Sasaki 《Polymer》2009,50(20):4788-2103
Catalytic behavior of tetrahydroborate complexes of rare earth metals, Ln(BH4)3(THF)x (1: Ln = La, x = 3; 2: Ln = Pr, x = 2; 3: Ln = Nd, x = 3; 4: Ln = Sm, x = 3; 5: Ln = Y, x = 2.5; 6: Ln = Yb, x = 3), for ring-opening polymerization (ROP) of six-membered cyclic esters, δ-valerolactone (VL) and d,l-lactide (d,l-LA), was studied. The controlled polymerization of VL with 1-6 proceeded in THF at 60 °C. The catalytic activities of these complexes for the ROP of VL were observed to be in order of the ionic radii of the metals: 1(La) ≥ 2(Pr) ≥ 3(Nd) > 4(Sm) > 5(Y) > 6(Yb). The obtained polymers were demonstrated to be hydroxy-telechelic by 1H NMR and MALDI-TOF MS spectroscopy. The controlled ROP of d,l-LA also proceeded by these complexes. The activities of these complexes for the d,l-LA ROP were also in order of the ionic radii of the metals.  相似文献   

17.
Jeffrey S. Wiggins 《Polymer》2006,47(6):1960-1969
d,l-Lactide was initiated with 1,4-butanediol in the presence of stannous octoate catalyst to provide hydroxyl-terminated poly(d,l-lactide) at 5000 and 20,000 g/mol. Portions of these materials were reacted with succinic anhydride in the presence of 1-methylimidazole to convert the hydroxyl functionality to succinic acid-terminated polymers in relatively high yield. The four materials were placed in a 7.4 pH buffered saline solution at 37 °C and monitored up to 180 days for their relative moisture uptake and weight loss behaviors. Carboxylic acid functionality displayed a dramatic effect on the moisture uptake behaviors for the 5000 and 20,000 g/mol polymers when compared to their respective hydroxyl functional materials. Carboxylic acid functionality significantly increased the hydrolytic degradation rate and mass loss behavior for the 5000 g/mol material, but did not affect the hydrolytic degradation rate for the higher molecular weight sample. These results suggest that moisture uptake is not the rate limiting step for the hydrolytic degradation high molecular weight poly(d,l-lactide).  相似文献   

18.
Linbo Wu  Dan Cao  Yuan Huang  Bo-Geng Li 《Polymer》2008,49(3):742-748
In situ melt polycondensation of l-lactic acid (LLA) in the presence of acidic silica sol (aSS) is proposed for the first time to prepare PLLA/SiO2 nanocomposites. The SiO2 nanoparticles were readily dispersed in LLA monomer, which has similar polarity and hydrophilicity to the silica sol medium. During the polycondensation process, both the matrix and the surface of SiO2 nanoparticles changed from high polarity/hydrophilicity to weak polarity/hydrophobicity due to simultaneous chain growth in the organic phase and chemical grafting on the particle surface. The chemical grafting provided steric stabilization and ensured satisfactory nano-scale dispersion in the final nanocomposites. The introduction of SiO2 nanoparticles resulted in unchanged yield and better color. The molecular weight kept almost constant at low SiO2 content (<8 wt%) but decreased at higher SiO2 content. The method is also characterized by commercially available and cheap starting material and environmentally benign process. It appears to be a promising approach for the preparation of PLLA/SiO2 nanocomposites.  相似文献   

19.
New ABC type terpolymers of poly(ethoxyethyl glycidyl ether)/poly(ethylene oxide)/poly(d,l-lactide) were obtained by multi-mode anionic polymerization. After successive deprotection of the ethoxyethyl groups from the first block, highly hydroxyl functionalized copolymers of polyglycidol/poly(ethylene oxide)/poly(d,l-lactide) were obtained. These copolymers form elongated ellipsoidal micelles by direct dissolution in water. The micelles consist of a poly(d,l-lactide) core and stabilizing shell of polyglycidol/poly(ethylene oxide). The hydroxyl groups of polyglycidol blocks situated at the micelle surface provide high functionality, which could be engaged in further chemical modification resulting in a potential drug targeting agents. The micellization process of the copolymers in aqueous media was studied by hydrophobic dye solubilization, static and dynamic light scattering, and transmission electron microscopy.  相似文献   

20.
Mei-Ling Cheng  Chin-Hung Lan 《Polymer》2011,52(6):1391-1401
Blends of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) and poly(d,l-lactic acid) (PDLLA) with different ratios were fabricated into fibrous membranes by electrospinning processes. Suggested by DSC, WAXD, and SAXS results, the molecular chains of PHBHHx and PDLLA were partially mixed in the amorphous phase, PDLLA didn’t affect the growth of PHBHHx crystalline phase, and PDLLA was excluded from PHBHHx lamella stacks, i.e. in form of interstack segregation, in the blend fibrous matrix. The mechanical properties of the electrospun fibrous membranes depended on the orientation of fibers in the membranes. The electrospun membranes had higher elongation; furthermore, the tensile strength and modulus of the fibers within the membranes were higher than the corresponding cast membranes. As the content of PDLLA increased, the electrospun fibrous membranes of the blends showed higher elongation and lower tensile modulus due to the decreased number of lamellae. According to the change of molecular weight distribution, both PHBHHx and PDLLA portions in the electrospun blend membranes followed bulk erosion and PDLLA degraded faster than PHBHHx during the degradation process. The morphology change of the electrospun fibrous blends during the hydrolytic degradation indicated that the degradation behaviors were strongly influenced by the miscibility and the structural phase segregation of PHBHHx/PDLLA blend in the electrospun fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号