共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Taking 1,2‐dichloroethane from the oxychlorination reaction is a commercially very important process due to the large application of the 1,2‐dichloroethane in the chemical industry of PVC production. This work presents the modeling and simulation of an oxychlorination reactor with a fluidized bed. The pseudo‐homogeneous model with one‐dimensional flow in steady state was applied based on the theory of fluidized bed in two phases. It allows the sensitivity analysis of the operational and project parameters of the reactor. The ordinary differential equations system that represents the mathematical model of the reactor was solved through the application of the numerical method of Newton–Raphson's. The results obtained have proved that the developed model represents the system suitably, in spite of the one‐dimensional model. The effect of different parameters was investigated through the sensitivity analysis, and the results show that the parameters that have the largest influence on the reactor performances are: fluidized bed height, bubble diameter, residence time, cupric chloride weight in the catalyst, and emulsion phase temperature. 相似文献
3.
Crystallization process in a fluidized bed reactor to remove fluoride from industrial wastewaters has been studied as a suitable alternative to the chemical precipitation in order to decrease the sludge formation as well as to recover fluoride as synthetic calcium fluoride.In the modeling, design and control of a fluidized bed reactor for water treatment it is necessary to study the particle growth kinetics. Removal of fluoride by crystallization process in a fluidized bed reactor using granular calcite as seed material has been carried out in a laboratory-scale fluidized bed reactor in order to study the particle growth kinetics for modeling, design, control and operation purposes.The main variables have been studied, including superficial velocity (SV, ), particle size of the seed material (L0, m) and supersaturation (S). It has been developed a growth model based on the aggregation and molecular growth mechanisms. The kinetic model and parameters given by the equation fits well the experimental data for the studied range of variables. 相似文献
4.
Propenoxide isomerization, over lithium orthophosphate as a catalyst, was investigated in a fluidized bed reactor. A mathematical model of the process was developed and its kinetic parameters identified. There is a high degree of selectivity for allyl alcohol. 相似文献
5.
The design of an adaptive nonlinear controller for the control of a fluidized bed reactor is derived by using exact linearization techniques. Reset action and parameter adaptation are used to make more robust the precise compensation of nonlinear terms, which is called for in the linearization technique. A nonlinear antiwindup mechanism is introduced to handle reset windup problem and to provide fast response without large overshoot. Simulation results show that the proposed adaptive controller guarantees good setpoint tracking. The developed estimation algorithm allows accurate estimation of the parameters for which the regressor component is not zero. 相似文献
6.
S. H. Lin 《Journal of chemical technology and biotechnology (Oxford, Oxfordshire : 1986)》1991,51(4):473-482
A physical model is given in the present report for representing a three-phase biological fluidized bed reaction system which consists of microorganism-coated particles, waste water and air. The system is assumed to be well fluidized. The physical model can be represented by two differential equations describing, respectively, the substrate axial dispersion and diffusion/reaction. Numerical values of the physical parameters are selected from the literature or estimated from semi-empirical equations. The governing system equations are solved by an iterative finite-difference scheme. The theoretical predictions are compared with several experimental measurements and the agreement between them found to be very good, validating the physical model reported here. 相似文献
7.
This paper presents the experimental results of MSW gasification in a spout-fluid bed reactor. Municipal solid waste (MSW) modeled based on compositions of Bangkok waste transfer station “On-nuch” was used as the fuel. Three scenarios were investigated in this study. In the base case scenario, only primary air of equivalence ratios (ER) 0.35, 0.3, 0.25, 0.2, and 0.15 were used. The other two scenarios investigated the influence of secondary air in the free board, and the effect of the recirculation of carryover captured by the cyclone inside the reactor's free board at an ER of 0.25. In the base case, higher heating values of 2.40–5.05 MJ/Nm3 were obtained with the ER values of 0.35–0.15, respectively. However, opposite trend was observed for the tar content. At ER of 0.35, a value of 11.37 g/Nm3 was found compared to 20.76 g/Nm3 at ER of 0.15. The tar content in the producer gas was reduced from 14.47 to 10.98 g/Nm3 when secondary air was supplied in the freeboard due to an increase in temperature. The gasification efficiency was increased from the base case which was 35.78 to 38.99% with the recirculation of carryover. Higher heating value of producer gas was found to be 4.4–4.9 MJ/Nm3 in this case. 相似文献
8.
Mesoscale drag model is of crucial significance for the reliability and accuracy in coarse-grid EulerianEulerian two-fluid model(TFM) simulations of gas-solid flow hydrodynamics in fluidized bed reactors.Although numerous mesoscale drag models have been reported in the literature,a systematic comparison of their prediction capability from the perspective of heterogeneity analysis is still lacking.In this study,in order to investigate the effect of several typical drag models on the hydrodynamic ... 相似文献
9.
A simple model that simulates a single biomass particle devolatilization is described. The model takes into account the main physical and chemical factors influencing the phenomenon at high temperatures (>700 K), where the production of gaseous components far outweighs that of liquids. The predictions of the model are shown to be in good agreement with published data. The model is then applied to the devolatilization of biomass in a fluidized bed, in which attention is focused on heat transfer, particle mixing and elutriation, and gas production. Predictions on the overall devolatilization time for a biomass particle are compared with experimental results obtained in a fluidized bed reactor in which the process was monitored by continuous measurement of the bed pressure. Good correspondence of predicted with calculated values was obtained, supporting the validity of the many approximations made in the derivation of the governing relationships for the pyrolysis process. 相似文献
10.
J. Shu V. I. Lakshmanan C. E. Dodson 《Chemical Engineering and Processing: Process Intensification》2000,39(6):499-506
Hydrodynamic behavior of a newly developed toroidal fluidized bed reactor is studied in this work. The reactor has a gas distributor consisting of angled blades in an annular ring at the reactor bottom. The driving force for particles to move over the distributing blades comes from the velocity head of gas jets accelerated upon entering the blade spacing. Relevant hydrodynamic behaviors are measured with various inert materials in a pilot scale 400-mm toroidal fluidized bed reactor. The observed hydrodynamic behavior is found to be essentially predictable at ambient temperature by conventional hydrodynamic models. Fine particle tracking on the reactor wall is clearly observed through oxidation of zinc dross at a bed temperature of around 1120°C, and is simulated on the basis of a simplified mathematical model. Hydrodynamic issues, such as particle flying trajectory and retention time in the reactor, are discussed based on the developed model. 相似文献
11.
Wenyuan Wu Andrew L. Gerhart Zumao Chen Paul A. Dellenback Pradeep K. Agarwal 《Powder Technology》2001,120(3):151-158
The on-line measurement of solids flowrate is important to numerous industrial processes. This paper considers a variation of impact-type solids flow meters suitable for use in numerous applications, including circulating fluidized beds (CFBs). The solids flowrate meter introduced herein is on-line, capable of operation in high temperature environments, and useful for a broad range of flowrates with good linearity, accuracy and fast response time. The flow meter works by measuring the torque that results on a hinged plate when falling solids impact the plate. A theoretical model of the device is developed and its results are compared to experimental data for the operation with various solids. 相似文献
12.
CFD techniques are used to study the precipitation of barium carbonate in a solid–liquid fluidized bed reactor. Experimental analysis of the hydrodynamic behaviour for a neutralization reaction in the fluidized bed column, followed by CFD simulations is carried out using different reaction models. The Eddy Dissipation model, the Eddy Dissipation model-MTS and the Eddy Dissipation Concept micro-mixing models are tested in order to simulate the acid–base instantaneous reaction. 相似文献
13.
14.
Fei Wei Qiang Zhang Wei-Zhong Qian Hao Yu Yao Wang Guo-Hua Luo Guang-Hui Xu De-Zheng Wang 《Powder Technology》2008,183(1):10-20
The scaled-up mass production of carbon nanotubes (CNTs) was reviewed by a multiscale analysis from the delicate catalyst control needed at the atomic level, CNT agglomerate formation at the mesoscopic scale, to the continuous mass production process on the macroscopic scale. A four level analysis that considered CNT assembly, agglomerate structure, reactor hydrodynamics and coupled processing was used. Atomic scale catalyst design concepts were used to modulate the CNT structure. On the reactor scale, the design consideration was on getting suitable CNT and catalyst agglomerates with good fluidization behavior and transport properties. A pilot plant with high yield (15 kg/h) and purity (> 99.9%) was demonstrated, which made a great stride for extensive applications of CNTs. Other nano-agglomerate structures can also be considered using the multiscale time and space analysis, which will benefit mass production and applications of nanomaterials in future. 相似文献
15.
Detailed local flow structures are investigated in bubbling and turbulent fluidized bed with FCC particles. The operating conditions ranges from 0.06 to 1.4 m/s. Extensive experiments are carried out using a newly developed optical fiber probe system, which can measure the solids concentration and velocity at multi-points. The results reveal that with increasing Ug, local solids concentrations go through three evolution stages, reflecting a gradual regime transition process. Under all operating conditions, upflowing and descending particles co-exist at all measuring locations. The upflowing particle velocity is strong function of both superficial gas velocity and spatial position. However, the descending particle velocity mainly depends on superficial gas velocity. The bed radial symmetry and the effects of static bed height on the local flow structures are also investigated. 相似文献
16.
17.
18.
Chun‐Sheng Wu Ju‐Sheng Huang Hong‐You Gou 《Journal of chemical technology and biotechnology (Oxford, Oxfordshire : 1986)》2005,80(11):1273-1281
More realistic dynamic bed‐expansion experiments using a three‐phase anaerobic fluidized bed reactor (AFBR) with and without internal biogas production were conducted for the establishment of correlation equations for the mean volume ratio of wakes to bubbles (k). A predictive model was also developed for the expansion characteristics of the three‐phase AFBR with internal biogas production. The predicted bed‐expansion heights (HGLS) deviated by only ±10% from the experimental measurements for the three‐phase AFBR. According to the modeling results, if a three‐phase AFBR is loaded into a carrier with low specific gravity (dry density of carrier, ρmd = 1.37 g cm?3; wet density of carrier, ρmw = 1.57 g cm?3) and operated at a high superficial liquid velocity (ul = 4.0 cm s?1), the ratio of HGLS to HLS at a high superficial gas velocity (ug = 1.5 cm s?1) can reach as high as 271%. A higher fluidized‐bed height has a greater effect on the bed‐expansion behavior because of the decrease in liquid pressure (surrounding gas bubbles) along the fluidized‐bed height. From parametric sensitivity analyses, HGLS is most sensitive to the parameter reactor width (X), especially within a small ΔX/X0 range of ±10%; sensitive to ρmw, diameter of the carrier, ρmd and total mass of carrier and least sensitive to ul, biofilm thickness and ug. Copyright © 2005 Society of Chemical Industry 相似文献
19.
A series of experiments has been conducted to study mixing and hydrodynamic behaviour of a downward facing sparger in a turbulent fluidized bed reactor. Using pressure measurement techniques, two flow discharge modes were identified around the sparger by injecting a gas tracer into the bed. These are bubbling and jetting conditions. Experimental results show that, under bubbling conditions, bubbles tend to keep their identity, while under jetting conditions a highly turbulent heterogeneous area is formed around the injection point. Due to attrition and erosion of internal heating or cooling surfaces in industrial reactors, the dominant discharge mode is the bubbling pattern. Therefore, in this investigation, the bubbling pattern is studied by measuring the radial and axial dispersion of gas tracer injected to a hot fluidized bed reactor of 20 cm diameter of FCC and sand particles. A three‐phase model is also proposed in order to predict the mixing length. In addition, the effect of sparger configuration on tracer gas mixing was examined for FCC particles. 相似文献
20.
A predictive model was developed for the fully developed zone of a circulating fluidized bed (CFB) riser reactor operating in the fast fluidization regime that overcomes limitations of existing models. The model accounts for the upward flow of gas and solids in the core and downward flow of the two phases in the annulus. Additionally, a numerical solution methodology for the simulation of a riser reactor employing the hydrodynamic model was devised. A simulation was performed using the fast, main Claus reaction to demonstrate the effects of backmixing in the fast fluidization regime. It was found that the molar flow rates of the reactants leaving a fast fluidized CFB riser reactor were significantly higher than those leaving an identical reactor operating in the pneumatic transport regime. 相似文献