首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three strain rates of 1.0, 0.5, and 0.25 Hz were selected for studying percolation segregation in binary mixtures of urea (spherical) and potash (angular). Mixed binary samples prepared from three mean coarse sizes with their corresponding three and two fines sizes for potash and urea, respectively. Herein, three coarse mean sizes 3675, 3075, and 2580 µm and three mean fine sizes 2180, 1850, and 1550 µm were selected for tests. Percolation segregation in mixed binary sample was quantified using the primary segregation shear cell (PSSC-II). Based on experimental results, the segregated fines mass, normalized segregation rate (NSR) and segregation rate of fines for binary mixtures increased with increasing strain rate from 0.25 Hz to 1.0 Hz. The NSR decreased with decreasing strain rate from 1.0 Hz > 0.5 Hz > 0.25 Hz for size ratios 1.7, 2.0, and 2.4 (p < 0.05). At these three strain rates, for size ratio 2.0, the NSR of coarse size 3675 µm with fines size 1850 µm was smaller than the NSR of coarse size 3075 µm with fine size 1550 µm in the binary mixtures (p < 0.05). At three strain rates of 1.0, 0.5, and 0.25 Hz, the NSR for potash was higher (53%, 56%, and 46%) than the NSR for urea for the same size ratio (p < 0.05).  相似文献   

2.
In this review, we have systematically discussed diesel particulate composition and its formation, understanding of which is essential to design the effective catalyst compositions. The most commonly used after treatment strategies such as diesel oxidation catalysts, diesel particulate filters, and partial flow filters are described followed by chronological and category-wise discussions on various groups of reported soot oxidation catalysts. A detailed review is also presented on mechanistic and kinetics aspects of non-catalytic direct particulate matter (PM) or soot oxidation in air/O2 and NO2. Recent progress in catalyst development with a focus on the low-cost catalyst for diesel PM oxidation has been given more emphasis considering their renewed importance.  相似文献   

3.
Exposure to shear flow produced by a pressure-driven capillary rheometer provides a concentration gradient without phase separation in miscible polymer blends of bisphenol-A polycarbonate containing low-molecular-weight poly(methyl methacrylate) (PMMA). The strand surface extruded from the rheometer contains a large amount of PMMA. However, the strand is transparent because there is no light scattering due to phase separation. The segregation behavior, that is, enrichment of the PMMA content at the strand surface, is enhanced when the molecular weight of PMMA is low. Furthermore, the segregation is also enhanced at high temperatures and at high shear rates. By contrast, the die length barely affects the degree of segregation. The segregation phenomenon should be noted because it may facilitate the modification of the surface properties of various products.  相似文献   

4.
Predicting segregation and mixing of polydisperse granular materials in industrial processes remains a challenging problem. Here, we extend the application of a general predictive continuum model that captures the effects of segregation, diffusion, and advection in two ways. First, we consider polydisperse segregating flow in developing steady segregation and in developing unsteady segregation. In both cases, several terms in the model that were zero in the previously examined case of fully developed streamwise-periodic steady segregation in a chute are now non-zero, which makes application of the model substantially more challenging. Second, we apply the polydisperse approach to density polydisperse materials with the same particle size. Predictions of the model agree quantitatively with experimentally validated discrete element method (DEM) simulations of both size polydisperse and density polydisperse mixtures having uniform, triangular, and log-normal distributions. © 2018 American Institute of Chemical Engineers AIChE J, 65: 882–893, 2019  相似文献   

5.
This study is aimed at unveiling the influence of binary mixtures of nonspherical particles on hopper discharge behavior, which remains poorly understood. The discrete element method (DEM) is employed to simulate seven particle types with aspect ratios between 0 and 2 (namely, a sphere, two ellipsoids, two cylinders, and two cuboids) with the same volume. Seven monodisperse systems and twelve binary-shape mixtures are assessed. For the monodisperse systems, particle shape is the dominant factor dictating discharge rate, compared to other factors like aspect ratio, preferential orientation, and packing. Regarding the binary-shape mixtures, the discharge rates are similar for all twelve mixtures, reflecting a surprising lack of shape effects, which in turn means the negligible impact of solid volume fraction, aspect ratio, and segregation extent. Moreover, collision force is generally negatively correlated with discharge rate.  相似文献   

6.
The phase segregation as a result of mixing organic semiconductors with polymeric additives has been reported as an intriguing avenue to optimize semiconductor crystal microstructure, active layer composition and charge carrier transport. In this work, we report the mixing of organic semiconductor 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS pentacene) with poly(butylacrylate) as a polymer additive to control the semiconductor crystal growth and morphology. The incorporation of poly(butylacrylate) induces a vertical phase segregation but a more predominant lateral phase segregation with TIPS pentacene. Along with a solvent vapor annealing technique, poly(butylacrylate) evenly distributes the semiconductor nuclei on the polymer matrix, and results in organic crystal with enlarged grain width. In addition, the randomized crystal growth of TIPS pentacene has been significantly reduced, giving rise to a 25-fold decrease in misorientation angle. The bottom-gate, top-contact thin film transistors with the poly(butylacrylate)/TIPS pentacene mixture as the active layer demonstrated an improved hole mobility of 0.11 cm2/Vs. We believe the phase segregation induced by the poly(butylacrylate) polymer as well as the solvent vapor annealing method as reported in this work can be facilely replicated on other organic semiconductors to realize high performance organic electronic device applications.  相似文献   

7.
Bubbling, gas‐fluidized bed experiments involving Geldart Group B particles with continuous‐size distributions have been carried out. Sand of various widths of Gaussian or lognormal distributions were completely fluidized, then axial concentration profiles were obtained from frozen‐bed sectioning. Similar to previous works on binary systems, results show that mean particle diameter decreases with increasing bed height, and that wider Gaussian distributions show increased segregation extents. Surprisingly, however, lognormal distributions exhibit a nonmonotonic segregation trend with respect to distribution widths. In addition, the shape of the local‐size distribution is largely preserved with respect to that of the overall distribution. These findings on the nature of local‐size distribution provide experimental confirmation of previous results for granular and gas‐solid simulations. Lastly, an interesting observation is that although monodisperse Geldart Group D particles cannot be completely fluidized, their presence in lognormal distributions investigated still results in complete fluidization of all particles. © 2010 American Institute of Chemical Engineers AIChE J, 2010  相似文献   

8.
The practicality of implantable biomedical materials depends on the design of size and function to meet the needs of personal customization. This paper used fused deposition modeling 3D printing process to make composite materials, and studied the performance of 3D printed samples through different matrix molecular weights, print filling settings, additives, and their contents. Mechanical properties, thermal analysis, structural characterization, surface hydrophilicity, and functional verification of PCL-based 3D printed composites were discussed. We found that 80% print filling and 10% SA addition could greatly improve the work of fracture of the tensile sample. Furthermore, the efficacy and content of CS was also verified and analyzed. These resulting information are helpful for structural design and functional matching of medical composites.  相似文献   

9.
The segregation structure and the gradient structure of poly(2-ethylhexylacrylate) (P2-EHA)/poly(vinylidene fluoride-co-hexafluoro acetone) [P(VDF-HFA)] blends were confirmed by ATR-FTIR and SEM. For the P2-EHA/P(VDF-HFA) (50/50) blend, the P(VDF-HFA) and P2-EHA layers were observed at the free surface side and bottom side, respectively. The gradient structure was obtained for the P2-EHA/P(VDF-HFA) (30/70) blend. The domain morphology of a cross section of the P2-EHA/P(VDF-HFA) (50/50) blend was dramatically changed by the thickness of the blend film. Finally, we propose that the segregation structure and gradient structure formed in P2-EHA/ P(VDF-HFA) blends were caused by surface tension difference, rate of phase separation, rate of solvent evaporation, and molecular weight difference.  相似文献   

10.
The segregation structure and the gradient structure of poly(2-ethylhexylacrylate) (P2-EHA)/poly(vinylidene fluoride-co-hexafluoro acetone) [P(VDF-HFA)] blends were confirmed by ATR-FTIR and SEM. For the P2-EHA/P(VDF-HFA) (50/50) blend, the P(VDF-HFA) and P2-EHA layers were observed at the free surface side and bottom side, respectively. The gradient structure was obtained for the P2-EHA/P(VDF-HFA) (30/70) blend. The domain morphology of a cross section of the P2-EHA/P(VDF-HFA) (50/50) blend was dramatically changed by the thickness of the blend film. Finally, we propose that the segregation structure and gradient structure formed in P2-EHA/ P(VDF-HFA) blends were caused by surface tension difference, rate of phase separation, rate of solvent evaporation, and molecular weight difference.  相似文献   

11.
Preparation and characterization of a series of polyurea (PU) coatings and their influences on layered composite materials based on rebonded polyurethane (PUr) for floor application are described in terms of the raw materials, formulation, and application performance. While PU coatings show almost the same FTIR peaks, thermogravimetric analyses results reveal that thermal stabilities of the PU coatings are slightly enhanced with the use of trifunctional polyamine compound and one step degradation takes place beyond 300°C. All PU coatings have very dense, smooth, and bubble-free surfaces whereas the cross-sectional SEM images exhibit pores of different sizes. Contact angle values of all PU coatings are bigger than 90° indicating that the surfaces are hydrophobic. Using propylene carbonate in the preparation of methylene diphenyl diisocyanate (MDI) prepolymer and the chain extender in the PU coating formulation impacts the mechanical and electrical properties of the PU coatings as well as layered PU/PUr composite materials. In conclusion, not only the controllable physicochemical and mechanical properties of layered PUr/PU composites but also the usage potential of recycled PU scraps in these layered composites are very promising for better floor applications.  相似文献   

12.
滚筒端面对颗粒物料轴向混合过程影响的离散模拟   总被引:1,自引:0,他引:1  
基于离散单元法模拟了仅颜色存在差异的两组分颗粒物料在轴径比0.3的窄滚筒中的轴向混合过程,滚筒的左侧端面固定,右侧端面可随侧壁旋转。结果表明,不同物料装载量和滚筒转速下,在达到完全混合状态前,黄红颗粒物料初始轴向界面处可能出现3种不同的径向结构:黄?红结构、红?黄?红结构和红?黄结构。红?黄?红结构和红?黄结构工况下,固定端面一侧还可出现更复杂的多层三明治结构。径向结构源自滚筒端面效应导致的颗粒轴向对流,颗粒轴向速度在切向截面上的分布决定了径向结构的类型。  相似文献   

13.
采用聚乙烯吡咯烷酮(PVP),通过溶液共混的方式对聚乙烯醇(PVA)进行改性,添加酒糟(JZ)制备复合包膜材料,并对氮肥进行包膜制备缓释肥料。研究了JZ的添加量对复合包膜材料性能以及包膜肥料缓释性能的影响。结果表明:JZ与各组分之间通过氢键作用相互结合,相容性良好;JZ的添加使复合膜材料热稳定性得到了显著提高;120d PUPZ5复合包膜材料降解率相比未添加JZ提高了20.11%;随着JZ的加入,复合包膜材料的机械性能先增加后下降,当JZ与PVA的质量比为15∶100时复合膜材料的力学性能达到了20.75MPa,比未添加酒糟提高了528.79%,且缓释肥料具有良好的缓释性能,可以通过调节JZ在复合包膜材料中的含量来控制缓释肥料中N的释放速率。  相似文献   

14.
The surface segregation in poly(butyl acrylate) (PBA)/poly(vinylidene fluoride-co-hexafluoro-acetone) [P(VDF-HFA)] blends was confirmed by X-ray photoelectron spectroscopy (XPS), and is thought to be caused because the surface tension of P(VDF-HFA) is smaller than that of PBA. The PBA/P(VDF-HFA) blends were miscible at room temperature and exhibited a lower critical solution temperature (LCST) phase behavior. Thus, it was considered that the surface segregation of the P(VDF-HFA) component in PBA/P(VDF-HFA) blends was caused by the difference in surface tension between the components. Depth profiles [In(<Ø1 (d) -Øb 1) vs. depth (d), where Ø1 (d) and Øb 1 are the volume fractions at depth d from the surface and into the bulk, respectively] for PBA/P(VDF-HFA) blends were constructed by the mean-field treatment. The ln(Ø1(d) - Øb 1) vs. d plots for the PBA/P(VDF-HFA) blends could be approximated by a straight line.  相似文献   

15.
Aliphatic hyperbranched poly(urethane-urea)s with different weight percentages of branch generating moiety were synthesized by a one pot A2 + BC2 approach. Isophorone diisocyanate was used as the A2 type monomer, while a tri-functional dihydroxyamine compound synthesized from ?-caprolactam and diethanol amine acted as the BC2 monomer. Evidence supporting the hyperbranched structure of the synthesized poly(urethane-urea) was obtained from 1H NMR spectra. FTIR study confirmed the nature and extent of hydrogen bonding present in this novel macromolecule. A Gaussian band fitting procedure of the IR band at amide-I region showed that the extent of hydrogen bonding increases with the increase of weight percentage of the tri-functional compound. The tensile strength, elongation at break, impact resistance, scratch hardness and gloss followed an increasing trend with the same. The thermal degradation of the hyperbranched poly(urethane-urea) was found to be dependent on the weight percentage of the BC2 type moiety. The kinetics of thermal degradation studied by the Ozawa method showed that the activation energy required for thermal degradation of hyperbranched polymer is higher than its linear polyurethane analog. The synthesized polymer was found to be biodegradable by Pseudomonas aeruginosa bacteria. The study showed superiority of the hyperbranched structure over the linear one. Thus the results indicated the potential usage of the studied hyperbranched poly(urethane-urea) as an advanced surface coating material.  相似文献   

16.
高分子金属配合物发光材料是一类很有价值的功能材料,评述了有关它的各种合成方法。以金属离子与含配位基团的聚合物进行反应,容易在高聚物之间形成交联,难以获得发光强度高的高分子配合物;使金属离子与高分子配体和小分子配体同时作用,可以得到荧光强度比较理想的产物,但反应难以定量控制;以小分子金属配合物单体与某些单体之间进行共聚合反应,也可获得荧光强度较高的高分子配合物,但聚合反应的空间位阻较大;通过两端都含有配位基团的刚性链的有机小分子配体直接与金属离子配合形成高分子金属配合物;以小分子金属配合物单体进行均聚或者将小分子金属配合物接枝到高聚物上也可以形成高分子金属配合物。  相似文献   

17.
Stimuli‐responsive elastomers are smart materials for sensing applications. Natural rubber (NR) is a renewable elastomer with excellent elasticity and fatigue resistance. In this work, a straightforward method for the preparation of pH‐responsive crosslinked materials from NR and poly(4‐vinylpyridine) (P4VP) via free radical crosslinking reaction using benzoyl peroxide (BPO) as an initiator is described. The effects of P4VP and BPO concentrations, reaction time and reaction temperature on immobilization percentage were investigated. It was found that the immobilization percentage reached 90% when using a P4VP concentration of 150 phr and a BPO concentration of 10 phr for 24 h at 90 °C. The pH responsiveness of the crosslinked materials was studied via water swelling, water contact angle and dye release measurements. Unlike unmodified rubber, the P4VP‐crosslinked NR was found to be pH‐responsive in acidic solution. Indigo carmine adsorption studies showed the Langmuir isotherm suggesting monolayer coverage of dye on the rubber surface. The dye could also be released upon increasing the pH of solution above 4. Based on these results, the introduction of pH responsiveness to NR will lead to novel responsive rubber‐based materials that can be used in biomedical and sensing applications. © 2016 Society of Chemical Industry  相似文献   

18.
《Ceramics International》2016,42(7):8351-8359
Dense and crack free six-layered functional graded materials were successfully produced by Spark Plasma Sintering by combining 3 mol% Y2O3-partially stabilized ZrO2 (3Y-PSZ) and 316L stainless steel. All the sintered products consisted of a steel free layer on one side and a cermet composite containing 50 vol% of both constituents on the opposite side. Conversely, the stainless steel concentration in the interlayers was progressively changed following diverse spatial profiles.It was found that the temperature interval from 1080 to 1180 °C required for the full consolidation from the 50 vol% composite layer to the 3Y-PSZ one, respectively, can be reached when adopting a specific die configuration where the cross section was varied from 30 to 28 mm, respectively. Correspondingly, the densification level of each layer, as well as the related hardness and fracture toughness properties, were highly enhanced with respect to the standard cylindrical die. In addition, a significant improvement of the material toughness was obtained when the material concentration exponent was decreased from 2 to 1, whereas this effect tends to vanish when such parameter was further reduced to 0.5.  相似文献   

19.
相变储热技术是解决热量在时空上分配不平衡问题的有效手段之一,研制高性能的复合相变材料(phase change material, PCM)成为当前研究者关注的重点。硬脂醇(stearyl alcohol, SAL)等有机PCM目前主要存在热导率偏低以及循环稳定性较差等问题而限制了实际应用。以SAL作为PCM,膨胀石墨(expanded graphite, EG)为高导热多孔基质,采用吸附定形工艺制备了16种SAL/EG复合PCMs[EG含量为7%、14%、21%、28%(质量);样品密度为700kg/m3、800kg/m3、900kg/m3、1000kg/m3]。对复合PCMs样品的微观结构、储热能力、导热性能、循环稳定性及充放热性能进行研究与分析。结果表明:SAL完全填充于EG的多孔网络。当样品密度为900kg/m3,EG质量分数为28%的水平热导率最高,其值为28.58W/(m ? K),相比于纯SAL[0.38W/(m ? K)]提高了74倍,该值大约是相对应垂直热导率[5.99W/(m ? K)]的4.8倍。另外在构建的充放热性能试验台上研究了样品中心位置的储/放热性能,结果显示样品密度为900kg/m3,EG质量分数为28%的样品充放热速率最大,固-液潜热吸热和放热阶段所经历的时间分别为53min和20min。与此同时验证了样品的导热性能和熔化-凝固特性,说明SAL/EG复合PCMs具有稳定可靠的储/放热性能。  相似文献   

20.
In this study, form‐stable phase change material (PCM)–high density polyethylene (HDPE)/paraffin hybrid with different flame‐retardant systems are prepared by using twin‐screw extruder technique. This kind of form‐stable PCM is made up of paraffin (a dispersed phase change material) and a HDPE (a supporting material). Their structures and flammability properties are characterized by scanning electronic microscope (SEM) and cone calorimetry. Thermal stability is shown by thermogravimetry analysis (TGA) and its latent heat is given by differential scanning calorimeter (DSC) method. SEM results show that the HDPE forms a three‐dimensional net structure and the paraffin is dispersed in it. The peak of heat release rate (HRR) of the flame‐retardant form‐stable PCM decreases markedly. In TGA curves, although the onset of weight loss of flame‐retardant form‐stable PCMs occur at a lower temperature than that of form‐stable PCM, flame‐retardant form‐stable PCMs produce a large amount of char residue at 700°C. DSC results show that the addition of flame retardant has little effect on the phase change latent heat of PCM. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1320–1327, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号