首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High performance silica/epoxy nanocomposites were prepared through mixing epoxy, tetraethyl orthosilicate (TEOS), γ-aminoproplytriethyoxy siliane(APTES), and triethyltrtramine (TETA) at 25 °C via sol-gel method on one-step. The effects of content of TEOS and coupling reagents on the mechanical and thermal properties of SiO2/EP composites were studied. Microcosmic morphology and properties of the hybrid materials were characterized by FT-IR, TEM, FESEM, and DSC. Results revealed that SiO2/EP composites achieve the optimal mechanical and thermal properties when the composites prepared with mass ratio of TEOS/APTES/epoxy for 3/2/100 without acetone. Compared with pristine epoxy, the tensile strength, elongation at break, impact strength and bend strength increased 67.6 %, 190 %, 82.1 % and 15.7 %, respectively. The further study was to investigate the content of TEOS and APTES effecting on mechanical properties and water sorption of fiber reinforced composites, which used the above compound as matrix resin.  相似文献   

2.
In the presented study, the structural, thermal, and mechanical properties of the nanocomposites were investigated by doping silanized hexagonal boron carbide (h-B4C) nanoparticles in varying proportions (0.5%, 1%, 2%, 3%, 4%, and 5%) into the epoxy resin by weight. For this purpose, the surfaces of h-B4C nanoparticles were silanized by using 3-(glycidyloxypropyl) trimethoxysilane (GPS) to improve adhesion between h-B4C nanoparticles and epoxy matrix. Then, the silanized nanoparticles were added to the resin by ultrasonication and mechanical stirring techniques to produce nanocomposites. The bond structure differences of silanized B4C nanoparticles (s-B4C) and nanoparticle doped composites were investigated by using Fourier transform infrared spectroscopy. Scanning electron microscopy and energy dispersion X-ray spectroscopy (SEM-EDS) technique was used to examine the distribution of nanoparticles in the modified nanocomposites. Differential scanning calorimetry and thermogravimetric analysis techniques were used to determine the thermal properties of the neat and s-B4C doped nanocomposites. The tensile test and dynamic mechanical analysis were performed to determine the mechanical properties. When the experimental results were examined, changes in the bonding structure of the s-B4C nanoparticles doped nanocomposites and significant improvements in the mechanical and thermal properties were observed. The optimum doping ratio was determined as 2% by weight. At this doping ratio, the Tg, tensile strength and storage modulus increased approximately 18%, 35%, and 44% compared to the neat composite, respectively.  相似文献   

3.
The epoxy/silica nanocomposites containing a wide range of isopropyltri[di(octyl) phosphate] titanate coupling agent (KR-12) modified nanosilica (m-nanosilica) loading (0–7 wt%) cured with tetrabutyl titanate hardener were prepared. Their morphology, thermal stability, thermal expansion, and mechanical properties including hardness, abrasion resistance were investigated. The wetting ability of epoxy-nanosilica systems on glass surface was assessed based on static contact angle. The obtained results showed that the contact angle of the nanocomposites containing m-nanosilica is slightly changed as compared to the contact angle of pure epoxy resin and lower than that of the nanocomposite containing unmodified nanosilica. The data of dynamic mechanical analysis of the nanocomposites using different nanosilica content indicated that the presence of m-nanosilica lowered the recovery energy of the nanocomposites to 41.62% as compared to neat epoxy. The limiting oxygen index (LOI) of the nanocomposites confirmed that the m-nanosilica increased the flame retardance of epoxy matrix. When using 7 wt% of m-nanosilca, the LOI value of the nanocomposite was 27.4 while this index of neat epoxy was 21.6. The scanning electron microscopic images of residual char combustion of the nanocompsites indicated a formation of nanosilica layer contributed to restrain combustion of the material.  相似文献   

4.
A series of silica–epoxy nanocomposites were prepared by hydrolysis of tetraethoxysilane within the organic matrix at different processing temperatures, i.e., 25 and 60 °C. Epoxy matrices reinforced with 2.0–10.0 wt% silica were subsequently crosslinked with an aliphatic diamine hardener to give optically transparent nanocomposite films. Interphase connections between silica networks and organic matrix were established by in situ functionalization of silica with 2.0 wt% γ-aminopropyltriethoxysilane (APTS). The microstructure of silica–epoxy nanocomposites as studied by transmission electron microscopy indicated the formation of very well-matched nanocomposites with homogeneous distribution of silica at relatively higher temperatures and in the presence of APTS. Thermogravimetric and static mechanical analyses confirmed considerable increase in thermal stability, stiffness, and toughness of the modified composite materials as compared to neat epoxy polymer and unmodified silica–epoxy nanocomposites. A slight improvement in the glass transition temperatures was also recorded by differential scanning calorimetry measurements. High temperature of hydrolysis during the in situ sol–gel process not only improved reaction kinetics but also promoted mutual solubility of the two phases, and consequently enhanced the interface strength. In addition, APTS influenced the size and distribution of the inorganic domain and resulted in better performance of the modified silica–epoxy nanocomposites.  相似文献   

5.
The organic-inorganic hybrid nanocomposites comprising of poly(iminohexamethyleneiminoadipoyl), better known as Polyamide-6,6 (abbreviated henceforth as PA66), and silica (SiO2) were synthesized through sol-gel technique at ambient temperature. The inorganic phase was generated in situ by hydrolysis-condensation of tetraethoxysilane (TEOS) in different concentrations, under acid catalysis, in presence of the organic phase, PA66, dissolved in formic acid. Infrared (IR) spectroscopy was used to monitor the microstructural evolution of the silica phase in the PA66 matrix. Wide angle X-ray scattering (WAXS) studies showed that the crystallinity in PA66 phase decreased with increasing silica content. Atomic force microscopy (AFM) of the nanocomposite films revealed the dispersion of SiO2 particle with dimensions of <100 nm in the form of network as well as linear structure. X-ray silicon mapping further confirmed the homogeneous dispersion of the silica phase in the bulk of the organic phase. The melting peak temperatures slightly decreased compared to neat PA66, while an improvement in thermal stability by about 20 °C was achieved with hybrid nanocomposite films, as indicated by thermogravimetric analysis (TGA). Dynamic mechanical analysis (DMA) exhibited significant improvement in storage modulus (E′) for the hybrid nanocomposites over the control specimen. An increase in Young's modulus and tensile strength of the hybrid films was also observed with an increase in silica content, indicating significant reinforcement of the matrix in the presence of nanoparticles. Some properties of the in situ prepared PA66-silica nanocomposites were compared with those of conventional composites prepared using precipitated silica as the filler by solution casting from formic acid.  相似文献   

6.
In the present study, the feasibility of Friction Spot Welding (FSpW) of a commercial-grade poly(methyl methacrylate) (PMMA) (PMMA GS) and PMMA 6N/functionalized silica (SiO2) nanocomposites was investigated. The silica nanoparticles were functionalized via atom transfer radical polymerization (ATRP) with PMMA chains to achieve a uniform dispersion in the polymer matrix. The successful functionalization of silica nanoparticles with PMMA chains via ATRP was evaluated by ATR-FT-IR and TGA measurements. Rheological investigations of the silica nanocomposites showed a plateau of the storage modulus G′ at low frequencies (0.01–0.03 rad/s) as a result of elastic particle–particle interactions. Overlap friction spot welds consisting of PMMA GS and a 2 wt% SiO2-g-PMMA nanocomposite were successfully prepared and compared to spot joints of PMMA GS welded with PMMA 6N and PMMA 6N/silica nanocomposite with 2 wt% unfunctionalized silica nanoparticles. Raman mappings of selected areas of cross-sectional plastographic specimens revealed an increased mixing behavior between the two polymer plates in the case of PMMA GS/2 wt% SiO2-g-PMMA joints. Although the joints welded with PMMA 6N/silica nanocomposites showed a reduction of 22% in lap shear strength and 21% displacement at peak load compared with the neat PMMA spot welds, they can compete with other state-of-the-art PMMA welding techniques such as thermal bonding and ultrasonic welding, which indicates the potential of friction spot welding as an alternative fabrication technology for joining future nanocomposite engineering parts.  相似文献   

7.
A sonochemical technique is used for in situ coating of iron oxide (Fe3O4) nanoparticles on outer surface of MWCNTs. These Fe3O4/MWCNTs were characterized using a high‐resolution transmission electron microscope (HRTEM), X‐ray diffraction, and thermogravimetric analysis. The as‐prepared Fe3O4/MWCNTs composite nanoparticles were further used as reinforcing fillers in epoxy‐based resin (Epon‐828). The nanocomposites of epoxy were prepared by infusion of (0.5 and 1.0 wt %) pristine MWCNTs and Fe3O4/MWCNTs composite nanoparticles. For comparison purposes, the neat epoxy resin was also prepared in the same procedure as the nanocomposites, only without nanoparticles. The thermal, mechanical, and morphological tests were carried out for neat and nanocomposites. The compression test results show that the highest improvements in compressive modulus (38%) and strength (8%) were observed for 0.5 wt % loading of Fe3O4/MWCNTs. HRTEM results show the uniform dispersion of Fe3O4/MWCNTs nanoparticles in epoxy when compared with the dispersion of MWCNTs. These Fe3O4/MWCNTs nanoparticles‐infused epoxy nanocomposite shows an increase in glass transition (Tg) temperature. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

8.
Phenolic novolac/silica and cresol novolac epoxy/silica hybrids were prepared through in situ sol‐gel reaction of tetraethoxysilane (TEOS). The formed hybrids were utilized as a curing agent and an epoxy resin in epoxy curing compositions, respectively. Via the two‐step preparation route, the resulting epoxy resin/silica hybrid nanocomposites exhibited good thermal stability, high glass transition temperatures, and low coefficients of thermal expansion. High condensation degree of the condensed silica was observed with a high content of siloxane bridges, p > 85%, measured by 29Si NMR. The two‐step route also provides feasibility of preparation of epoxy resin/silica hybrid nanocomposites compatible with the current processes of manufacturing of epoxy molding compounds. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 4047–4053, 2003  相似文献   

9.
This study develops a facile approach to fabricate adhesives consists of epoxy and cost-effective graphene platelets (GnPs). Morphology, mechanical properties, electrical and thermal conductivity, and adhesive toughness of epoxy/GnP nanocomposite were investigated. Significant improvements in mechanical properties of epoxy/GnP nanocomposites were achieved at low GnP loading of merely 0.5?vol%; for example, Young’s modulus, fracture toughness (K1C) and energy release rate (G1C) increased by 71%, 133% and 190%, respectively compared to neat epoxy. Percolation threshold of electrical conductivity is recorded at 0.58?vol% and thermal conductivity of 2.13?W m?1 K?1 at 6?vol% showing 4 folds enhancements. The lap shear strength of epoxy/GnP nanocomposite adhesive improved from 10.7?MPa for neat epoxy to 13.57?MPa at 0.375?vol% GnPs. The concluded results are superior to other composites or adhesives at similar fractions of fillers such as single-walled carbon nanotubes, multi-walled carbon nanotubes or graphene oxide. The study promises that GnPs are ideal candidate to achieve multifunctional epoxy adhesives.  相似文献   

10.
This paper presents experimental results of the effect of amine functionalization of carbon nanofibers (CNF) on the electrical, thermal, and mechanical properties of CNF/epoxy composites. The functionalized and non-functionalized CNFs (up to 3 wt%) were dispersed into epoxy using twin screw extruder. The specimens were characterized for electrical resistivities, thermal conductivity (K), UTS, and Vicker’s microhardness. The properties of the nanocomposites were compared with that of neat epoxy. The volume conductivity of the specimens increased by E12 S/cm and E09 S/cm in f-CNF/epoxy and CNF/epoxy, respectively, at 3 wt% filler loading. The increase in K for former was 106% at 150 °C, while for the latter it was only 64%. Similarly, UTS increased by 61% vs. 45% and hardness 65% vs. 43%. T g increased with increase in filler content. SEM examinations showed that functionalization resulted in better dispersion of the nanofibers and hence greater improvement in the studied properties of the nanocomposites.  相似文献   

11.
The present study was carried out to determine the effect of carbon black (CB) nanofiller silanization and loading on isothermal curing kinetics of epoxy nanocomposites. The epoxy resin specimens incorporated with 2, 4, and 8 wt% pristine CB and silanized CB were cured at isothermal temperatures of 43, 60, and 104°C. Differential scanning calorimetry was used to characterize the curing kinetics, Fourier transform infrared spectroscopy was employed to confirm silanization of CB nanofillers, and scanning electron microscopy was utilized to study the morphology of nanocomposite specimens. It was also observed that the silanization did not change the curing kinetics of CB nanocomposites significantly as compared to the neat epoxy resin. However, the curing reactions of the pristine CB nanocomposites were slower than the neat epoxy resin marked by an average 10 and 4% decrease in the final degree of cure for the nanocomposite specimens cured at 43 and 60°C, respectively. The morphological studies revealed that the silanized CB particles exhibited a more stable and homogeneous dispersion in the epoxy resin than the pristine CB particles. Potential applications for the fabricated nanocomposites include sensors, actuators, and conductive coatings for electrostatic dissipation control in plastic parts.  相似文献   

12.
To enhance the interfacial interaction in silica nanoparticles filled polymer composites, the silica surface was firstly treated with glycidoxypropyl trimethoxysilane (GPTMS), and its structure was analyzed by 13C NMR and FTIR spectrophotometry. Then a series of GPTMS-modified silica/cycloaliphatic epoxy nanocomposite coatings with 0–6 wt% silica content were prepared by UV-induced cationic polymerization in the presence of a diaryliodonium photoinitiator and thioxanthone photosensitizer. The physical and mechanical properties such as hardness, adhesion, gloss, impact as well as tensile strength were examined. As a result, these composites demonstrated superior tensile strength and tensile modulus with increasing proportion of modified silica up to a certain level. An increase in abrasion resistance of nanocomposites with the addition of modified silica was observed. The thermal stability of nanocomposites was not enhanced with the addition of silica particles. SEM studies indicate that silica particles were dispersed homogenously through the polymer matrix.  相似文献   

13.
Reverse water/oil (w/o) microemulsions composed of epoxy resin (EP) (the oil phase) and nonionic surfactant and ammonia aqueous solutions (the water phase) were used in the synthesis of SiO2/EP nanocomposites. The stability of reverse microemulsion was evaluated by measuring water solubilization of the microemulsion. Effects of surfactant type and content, ammonia concentration and temperature on the water solubilization were systematically investigated. Higher water solubilization capacity was obtained by nonionic surfactant TX‐100 compared with other two surfactants, Span‐80 and Tween‐80. Ammonia concentration of 5 wt% and preparation temperature at 35°C were favorable for forming a stable microemulsion and enabling the subsequent hydrolysis and condensation reaction of inorganic precursor tetraethoxysilane (TEOS). SiO2/ epoxy nanocomposites were prepared via in situ polymerization of TEOS within the nanoscale reverse microemulsion “water pool”. FTIR, SEM, and universal testing machine were used to characterize the structural and mechanical properties of the composite. The results revealed that the optimal mechanical properties were obtained at 3 wt% TEOS content. Compared with neat epoxy resin, the tensile and flexural strength of the composite were 40% and 12% higher, respectively. The formation of the silica structure in the hybrid was investigated with FTIR. The SEM and optical observations showed a ductile fracture morphology and good miscibility between inorganic and organic phases. POLYM. COMPOS., 35:1388–1394, 2014. © 2013 Society of Plastics Engineers  相似文献   

14.
The increased importance of nanostructured lignin exhibits a plethora of multifunctional groups, making it a highly adaptable material basis with significant potential for use in the rapidly expanding composite sector. Initially, lignin nanoparticles (NPs) were incorporated into epoxy networks via an in situ polymerization process where isophorone diamine functioned as a hardener to produce lignin/epoxy resin nanocomposites (lignin@TN). These lignin@TN exhibit promising characteristics, enhancing UV-blocking efficiency (35.69% at 404 nm with 3.72 wt% lignin) in transparent nanocomposite films while simultaneously improving mechanical properties compared with neat epoxy resin. Adding lignin nanoparticles to epoxy nanocomposites boost up tensile strength by an impressive 24% compared with the pristine epoxy but it affected the glass transition temperature (Tg). After all, this study has opened new possibilities for utilizing renewable, sustainable, and economic lignin feedstocks as a potential ingredient for reinforcing with thermoset polymers like epoxy.  相似文献   

15.
In this work, multiwalled carbon nanotubes (MWCNT), after previous oxidation, are functionalized with excess (3‐glycidyloxypropyl)trimethoxysilane (GLYMO) and used as reinforcement in epoxy matrix nanocomposites. Infrared, Raman, and energy‐dispersive X‐ray spectroscopies confirm the silanization of the MWCNT, while transmission electron microscopy images show that oxidized nanotubes presented less entanglement than pristine and silanized MWCNT. Thickening of the nanotubes is also observed after silanization, suggesting that the MWCNT are wrapped by siloxane chains. Field‐emission scanning electron microscopy reveals that oxidized nanotubes are better dispersed in the matrix, providing nanocomposites with better mechanical properties than those reinforced with pristine and silanized MWCNT. On the other hand, the glass transition temperature of the nanocomposite with 0.05 wt % MWCNT‐GLYMO increased by 14 °C compared to the neat epoxy resin, suggesting a strong matrix–nanotube adhesion. The functionalization of nanotubes using an excess amount of silane can thus favor the formation of an organosiloxane coating on the MWCNT, preventing its dispersion and contributing to poor mechanical properties of epoxy nanocomposites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44245.  相似文献   

16.
In contrast to polymeric composites, the role of interface/interphase has been widely acknowledged to govern their overall properties and performance. Environmental temperature has substantial effects on the interfacial durability of polymer nanocomposites. In this regard, present investigation has been carried out to study the mechanical performance of pristine (UCNT) and carboxylic functionalized CNT (FCNT) embedded epoxy nanocomposites under different elevated temperatures. Higher flexural strength and modulus of FCNT‐EP nanocomposite were recorded over UCNT‐EP and neat epoxy at room temperature environment. Flexural testing at elevated temperatures revealed a higher rate of strength degradation in polymer nanocomposites over neat epoxy. Postfailure analysis of specimens has been conducted to understand the alteration in failure micro‐mechanisms upon UCNTs and FCNTs addition in epoxy. Variation in viscoelastic properties with temperature has been studied from dynamic mechanical thermal analysis and significant reduction in glass transition temperature (Tg) is observed for nanocomposites. In the studied temperature and stress combinations, FCNT‐EP nanocomposites exhibited better creep resistance over UCNT‐EP and neat epoxy. Room temperature strengthening, elevated temperature strength degradations, improved creep resistance and reduction in Tg in nanocomposites over neat polymer have been discussed in terms of dynamic nature and gradient structure of CNT/epoxy interphase. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44851.  相似文献   

17.
Our previous studies showed that herringbone graphitic GNFs surface‐derivatized with reactive linker molecules bearing pendant primary amino functional groups capable of binding covalently to epoxy resins. Of special importance, herringbone GNFs derivatized with 3,4′‐oxydianiline (GNF‐ODA) were found to react with neat butyl glycidyl ether to form mono‐, di‐, tri‐, and tetra‐glycidyl oligomers covalently coupled to the ODA pendant amino group. The resulting reactive GNF‐ODA (butyl glycidyl)n nanofibers, r‐GNF‐ODA, are especially well suited for reactive, covalent incorporation into epoxy resins during thermal curing. Based on these studies, nanocomposites reinforced by the r‐GNF‐ODA nanofibers at nanofiber loadings of 0.15–1.3 wt% were prepared. Flexural property of cured r‐GNF‐ODA/epoxy nanocomposites were measured through three‐point‐bending tests. Thermal properties, including glass transition temperature (Tg) and coefficient of thermal expansion (CTE) for the nanocomposites, were investigated using thermal mechanical analysis. The nanocomposites containing 0.3 wt% of the nanofibers gives the highest mechanical properties. At this 0.3‐wt% fiber loading, the flexural strength, modulus and breaking strain of the particular nanocomposite are increased by about 26, 20, and 30%, respectively, compared to that of pure epoxy matrix. Moreover, the Tg value is the highest for this nanocomposite, 14°C higher than that of pure epoxy. The almost constant change in CTEs before and after Tg, and very close to the change of pure epoxy, is in agreement with our previous study results on a chemical bond existing between the r‐GNF‐ODA nanofibers and epoxy resin in the resulting nanocomposites. POLYM. COMPOS., 28:605–611, 2007. © 2007 Society of Plastics Engineers  相似文献   

18.
Bio‐based calcium carbonate nanoparticles (CaCO3) were synthesized via size reduction of eggshell powder using mechanical attrition followed by high intensity ultrasonic irradiation. The transmission electron microscopic (TEM) and BET surface area measurements show that these particles are less than 10 nm in size and a surface area of ~44 m2/g. Bio‐based nanocomposites were fabricated by infusion of different weight fractions of as‐prepared CaCO3 nanoparticles into Polylite® 31325‐00 resin system using a non‐contact Thinky® mixing method. As‐prepared bio‐nanocomposites were characterized for their thermal and mechanical properties. TEM studies showed that the particles were well dispersed over the entire volume of the matrix. Thermal analyses indicated that the bio‐nanocomposites are thermally more stable than the corresponding neat systems. Nanocomposite with 2% by weight loading of bio‐CaCO3 nanoparticles exhibited an 18°C increase in the glass transition temperature over the neat Polylite 31325 system. Mechanical tests have been carried out for both bio‐nanocomposites and neat resin systems. The compression test results of the 2% Bio‐CaCO3/Polylite 31325 nanocomposite showed an improvement of 14% and 27% in compressive strength and modulus respectively compared with the neat system. Details of the fabrication procedure and thermal and mechanical characterizations are presented in this article. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1442–1452, 2013  相似文献   

19.
The effects of poly(vinyl butyral) (PVB) and acid‐functionalized multiwalled carbon nanotube modification on the thermal and mechanical properties of novolac epoxy nanocomposites were investigated. The nanocomposite containing 1.5 wt % PVB and 0.1 wt % functionalized carbon nanotubes showed an increment of about 15°C in the peak degradation temperature compared to the neat novolac epoxy. The glass‐transition temperature of the novolac epoxy decreased with increasing PVB content but increased with an increase in the functionalized carbon nanotube concentration. The nanocomposites showed a lower tensile strength compared to the neat novolac epoxy; however, the elongation at break improved gradually with increasing PVB content. Maximum elongation and impact strength values of 7.4% and 17.0 kJ/m2 were achieved in the nanocomposite containing 1.5 wt % PVB and 0.25 wt % functionalized carbon nanotubes. The fractured surface morphology was examined with field emission scanning electron microscopy, and correlated with the mechanical properties. The functionalized carbon nanotubes showed preferential accumulation in the PVB phase beyond 0.25 wt % loading. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43333.  相似文献   

20.
In this study, we report a facile ex situ approach to preparing transparent dispensible high‐refractive index ZrO2/epoxy nanocomposites for LED encapsulation. Highly crystalline, near monodisperse ZrO2 nanoparticles (NPs) were synthesized by a nonaqueous approach using benzyl alcohol as the coordinating solvent. The synthesized particles were then modified by (3‐glycidyloxypropyl)trimethoxysilane (GMS) ligand. It was found that, with tiny amount of surface‐treating ligand, the modified ZrO2 NPs were able to be easily dispersed in a commercial epoxy matrix because of the epoxy compatible surface chemistry design as well as the small matrix molecular weight favoring mixing. Transparent thick (1 mm) ZrO2/epoxy nanocomposites with a particle core content as high as 50 wt % and an optical transparency of 90% in the visible light range were successfully prepared. The refractive index of the prepared composites increased from 1.51 for neat epoxy to 1.65 for 50 wt % (20 vol %) ZrO2 loading and maintained the same high‐Abbe number as the neat epoxy matrix. Compared with the neat epoxy encapsulant, an increase of 13.2% in light output power of red LEDs was achieved with the 50 wt % ZrO2/epoxy nanocomposite as the novel encapsulant material. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3785–3793, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号