首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We prepared novel poly(methyl methacrylate) (PMMA)/CaCO3 nanocomposites by using reverse micelle as a template. The nanoparticles of CaCO3 were prepared by the reverse microemulsion with functional monomer, methyl methacrylate (MMA) as oily phase, and the PMMA/CaCO3 nanocomposite was obtained via polymerization of MMA monomer. The SEM image showed that the nanoparticles of CaCO3 were dispersed in the polymer matrix. Dynamic mechanical analysis (DMTA) was performed to investigate the interaction between the nanoparticles and the polymer chains. In the low‐temperature ripening process, two tan δ peaks were observed in the nanocomposite, corresponding to the glass transitions of the matrix and the interface layer. In the high‐temperature ripening process, only one tan δ peak was observed, suggesting that the interface layer forms a continuous phase. The nanoparticles behave as a physical crosslinker in the interface layer. Modification of the surface of nanoparticles with polyacrylamide and poly(N,N′‐methylenedisacrylamide) in the nanocomposite did not show an appreciable effect on the interaction of nanoparticles with the matrix. Upon removal of the aqueous phase around the nanoparticles, we obtained surface‐capped nanoparticles by using an improved reverse microemulsion technique. Another PMMA/CaCO3 nanocomposite was also obtained with these modified nanoparticles. DMTA analysis of this nanocomposite demonstrated that the aqueous phase layer around the nanoparticles does not significantly affect the interaction between the nanoparticles and the polymer chains. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 2739–2749, 2004  相似文献   

2.
As part of broader effort to synthesize a new class of water-based composite, hybrid emulsion polymerization was carried out with acrylic monomers [methyl methacrylate (MMA), n-butyl acrylate (BA)]. Nanocomposite of P(MMA–BA)/nano CaCO3 was synthesized by in situ emulsion polymerization. Water-based alkyd coating with various proportions nano CaCO3, P(MMA–BA) and its nanocomposite was formulated. Extent of polymerization with and without nano CaCO3 was measured using gravimetric method. Thermal properties of neat polymer, nanocomposite and coating films were evaluated by TGA and DSC, DTA analysis. Uniform dispersion of nano CaCO3 in polymer matrix was ensured from SEM/TEM images. Incorporation of nanoparticles to hybrid polymer and nanocomposite to alkyd emulsion showed significant enhancement in mechanical and thermal properties. Dual role of nanocomposite in coating; as a partial binder and a filler to improve property profile of neat coating has been reported.  相似文献   

3.
The synthesis of poly(methylmethacrylate)‐calcium carbonate nanocomposites via the soapless emulsion polymerization was investigated after the CaCO3 nanoparticles were modified with different modifying agents. Such three kinds of modifying agents as sodium stearate (SS), oleic acid (OA), and PMMA were used to improve the surface property of CaCO3 nanoparticles. What was the most important factor to improve the amount of nanoparticles in the composites is one of the general goals. As determined by Field‐emission scanning electron microscopy (FESEM), the nanocomposites size of the diluted polymer emulsion was over 250 nm, while the sample without CaCO3 had a diameter of about 150 nm. It was worth pointing out that the surface morphology of polymer changed from slick to scraggy, when the nano‐CaCO3 particles participated in the polymerization process. The increase of the droplet size and the change of the polymer morphology indicated that the CaCO3 nanoparticles were present in the emulsion droplets. The X‐ray diffraction results of the nanocomposites showed the existence of typical calcite peaks. The results of the TGA, FTIR, and the contact angles indicated that the hydrophobic surface of CaCO3 nanoparticles was crucial to improve the compatibility between the CaCO3 and MMA monomer in emulsion system. The results of the TGA, FTIR, and the contact angles indicated that the hydrophobic surface of CaCO3 nanoparticles was crucial to improve the compatibility between the CaCO3 and MMA monomer in emulsion system. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

4.
As part of broader effort to synthesize a new class of water-based composite, hybrid emulsion polymerization was carried out with acrylic monomers [methyl methacrylate (MMA), n-butyl acrylate (BA)]. Nanocomposite of P(MMA–BA)/nano CaCO3 was synthesized by in situ emulsion polymerization. Water-based alkyd coating with various proportions nano CaCO3, P(MMA–BA) and its nanocomposite was formulated. Extent of polymerization with and without nano CaCO3 was measured using gravimetric method. Thermal properties of neat polymer, nanocomposite and coating films were evaluated by TGA and DSC, DTA analysis. Uniform dispersion of nano CaCO3 in polymer matrix was ensured from SEM/TEM images. Incorporation of nanoparticles to hybrid polymer and nanocomposite to alkyd emulsion showed significant enhancement in mechanical and thermal properties. Dual role of nanocomposite in coating; as a partial binder and a filler to improve property profile of neat coating has been reported.  相似文献   

5.
Poly(vinyl chloride) (PVC)/calcium carbonate (CaCO3) nanocomposites were synthesized by in situ polymerization of vinyl chloride (VC) in the presence of CaCO3 nanoparticles. Their thermal, rheological and mechanical properties were evaluated by dynamic mechanical analysis (DMA), thermogravimetry analysis (TGA), capillary rheometry, tensile and impact fracture tests. The results showed that CaCO3 nanoparticles were uniformly distributed in the PVC matrix during in situ polymerization of VC with 5.0 wt% or less nanoparticles. The glass transition and thermal decomposition temperatures of PVC phase in PVC/CaCO3 nanocomposites are shifted toward higher temperatures by the restriction of CaCO3 nanoparticles on the segmental and long-range chain mobility of the PVC phase. The nanocomposites showed shear thinning and power law behaviors. The ‘ball bearing’ effect of the spherical nanoparticles decreased the apparent viscosity of the PVC/CaCO3 nanocomposite melts, and the viscosity sensitivity on shear rate of the PVC/CaCO3 nanocomposite is higher than that of pristine PVC. Moreover, CaCO3 nanoparticles stiffen and toughen PVC simultaneously, and optimal properties were achieved at 5 wt% of CaCO3 nanoparticles in Young's modulus, tensile yield strength, elongation at break and Charpy notched impact energy. Detailed examinations of micro-failure micromechanisms of impact and tensile specimens showed that the CaCO3 nanoparticles acted as stress raisers leading to debonding/voiding and deformation of the matrix material around the nanoparticles. These mechanisms also lead to impact toughening of the nanocomposites.  相似文献   

6.
Water-based nanocomposite was synthesized using in-situ polymerization of Methyl Methacrylate. Nano-CaCO3 was added during polymerization along with aqueous solution of surfactant. Quantity of nano-CaCO3 was varied as 0, 2 and 4% of monomer quantity. XRD gram shows the presence of nano-CaCO3, which causes the crystalline nature to nanocomposites. TEM images of nano-CaCO3 show cubic structure. Synthesis of nanocomposite follows pseudo–first-order kinetics polymerization. PMMA-4% CaCO3 nanocomposite showed significant improvement in UV absorbance and in mechanical properties like adhesion, scratch resistance as compared to neat PMMA and 2% CaCO3 nanocomposite.  相似文献   

7.
Novel composite particles based on nanoscale calcium carbonate (nano‐CaCO3) as the core and polyacrylates as the shell were first synthesized by in situ encapsulating emulsion polymerization in the presence of the fresh slush pulp of calcium carbonate (CaCO3) nanoparticles. Subsequently, these modified nanoparticles were compounded with rigid poly(vinyl chloride) (RPVC) to prepare RPVC/CaCO3 nanocomposites. At the same time, the effects of the reinforcement and toughening of these modified nanoparticles on RPVC were investigated, and the synergistic effect of modified nanoparticles with chlorinated polyethylene (CPE) was also studied. The results showed that in the presence of nano‐CaCO3 particles, the in situ emulsion polymerization of acrylates was carried out smoothly, and polyacrylates successfully encapsulated on the surface of nano‐CaCO3 to prepare the modified nanoparticles, breaking down nano‐CaCO3 particle agglomerates, improving their dispersion in the matrix, and also increasing the particle–matrix interfacial adhesion. Thus, the effects of the reinforcement and toughening of these modified nanoparticles on RPVC were very significant, and the cooperative effect of the nanoparticles with CPE occurred in the united modification system. Scanning electron microscopy analyses indicated that large‐fiber drawing and network morphologies coexisted in the system of joint modification of nanoparticles with CPE. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 3940–3949, 2007  相似文献   

8.
Poly(vinyl alcohol) (PVA) nanocomposite and modified CaCO3 nanoparticles (NPs) were fabricated by ultrasound agitation method with particle content altering from 3, 5, and 8 wt %. The CaCO3 surface was successfully treated by 10 wt % of bioactive dicarboxylic acid (DA). The influences of loading modified NPs on the thermal, mechanical, adsorption, contact angle, and physical properties of the poly(vinyl alcohol) nanocomposite films were thoroughly studied. The results showed that incorporation of modified CaCO3 into the PVA matrix had better performance than the pure PVA. Meanwhile, tensile strength, Young's modulus, and thermal stability are enhanced from 33.36 MPa, 1.26 GPs, and 242.918C (neat PVA) to 81.7 MPa, 4.81 GPa, and 312.95 °C (PVA/CaCO3‐DA NC 5 wt %), respectively. Also, the adsorption capacity of the PVA/CaCO3‐DA NCs 5 and 8 wt % revealed that the NC films could act as an appropriate absorbent for the removal of Cd(II) ions with maximum adsorption capacity of about 20.70 and 25.19 mg g?1 for Cd(II), respectively. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45414.  相似文献   

9.
The focus of this work is to investigate the effect of different manufacturing methods on nanoparticles dispersion and rheological properties of polycarbonate (PC) filled nano-calcium carbonate (CaCO3) nanocomposites. Two methods were used to prepare the PC/CaCO3 nanocomposites through twin-screw extruder: one was compounding PC with CaCO3 nano-powder, named PC-CP; another was compounding PC with CaCO3 aqueous suspension, named PC-CAS. The relationship between the processing method and the particle dispersion, matrix molecular weight and rheological properties of the nanocomposite was discussed. Morphological observation showed that nanoparticles were dispersed more homogeneously in PC-CAS. Gel permeation chromatography (GPC) test showed that molecular weight drop of PC-CAS was smaller than PC-CP when CaCO3 content under 2.2 wt%. Melt flow rate (MFR) and capillary rheological behavior indicated the change of rheological property of PC-CP was larger than PC-CAS while CaCO3 content under 2.6 wt%. In general, both the dispersion and rheological property of PC-CAS were better than PC-CP under a reasonable CaCO3 content.  相似文献   

10.
A novel technique to modify the surface of calcium carbonate (CaCO3) nanoparticles, used as an antioxidant and reinforcing filler, by gallic acid is disclosed. The new properties of the modified CaCO3 could make it more useful and practical for the rubber industry. Thermal gravimetric (TGA), Fourier transform infrared spectroscopy, and transmission electron microscopy analyses showed that the gallic acid was bound onto the surface of CaCO3. The gallic acid modified CaCO3 exhibited a significant antioxidation property, as revealed by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) analysis. The mechanical properties of natural rubber vulcanizates filled with the gallic acid modified CaCO3 showed an enhanced reinforcement with increasing loading levels, and increased resistance to ozonolysis over that seen with the unmodified CaCO3 mixed with Irganox 1010 as the commercial antioxidant.  相似文献   

11.
Polyamide-CaCO3 nanocomposites were prepared by melt intercalation on twin-screw extruder. Various particle sizes (23, 17 and 11 nm) of CaCO3 were synthesized by in-situ deposition technique. The shape and sizes of nano-CaCO3 particles were confirmed by transmission electron microscopy (TEM). Nano-CaCO3 was added from 1 to 4 wt% in the polyamide. Properties such as Tensile strength, Elongation at break, Hardness, and Flame retardency were studied. These results were compared with commercial CaCO3 filled composites. Nano-CaCO3 filled in polyamide shows, 3 fold improvement in Young's modulus in comparison to commercial CaCO3 and 4–7 folds to virgin polyamide. Besides that, a polyamide nanocomposite shows 2 times improvements in flame retarding and vicat softening properties compared to commercial CaCO3. Moreover, thermal degradation was studied on TGA and found to be improved compared to commercial CaCO3. This was due to uniform dispersion of nano-CaCO3 with greater surface area in comparison to commercial CaCO3 in the polyamide matrix. Extent of dispersion of nano-CaCO3 was studied along with microcracks generated during tensile testing using scanning electron microscope (SEM).  相似文献   

12.
A new method for the fabrication of an electromagnetic nanocomposite based on Fe3O4 and polyaniline (PANI) is offered. The authors focused on improvement of the physical and electromagnetic properties of the nanocomposite using a new synthetic method. Supermagnetic Fe3O4 nanoparticles were synthesized through coprecipitation method. As a chemical modification, the third generation of poly (amidoamine) dendrimer was grafted on the surface of the nanoparticles. PANI was grafted from –NH2 functional groups of dendrimer via in situ polymerization of aniline. Finally, Au nanoparticles were loaded on the nanocomposite and its catalytic activity for reduction reactions was studied.  相似文献   

13.
The polymerization of acrylamide (AAM) onto calcium carbonate (CaCO3) particle surfaces induced by ultraviolet light and the properties of polyamide‐6 (PA6) filled with the surface‐treated CaCO3 were studied. Electron spectroscopy for chemical analysis (ESCA), scanning electron microscopy (SEM), particle size distribution, impact strength and degree of polymerization measurements were determined. After AAM polymerization, a PAAM layer was formed on the CaCO3 surface. This layer tightly banded the CaCO3 particle and could not be washed away by acetone. A N1s peak was observed in the ESCA spectra of the treated CaCO3 particles. The average particle size of the treated CaCO3 increased compared to that of the original CaCO3. The interfacial interaction and impact strength of the treated CaCO3–filled PA6 were enhanced compared to those of the untreated CaCO3–filled PA6. Polym. Eng. Sci. 44:1277–1282, 2004. © 2004 Society of Plastics Engineers.  相似文献   

14.
Summary: In this work, epoxy resin/CaCO3 nanocomposites were prepared by in situ and inclusion polymerization. Nanoparticles with a size of 30–40 nm were dispersed efficiently in bisphenol‐A alkaline solution before polymerization and the dispersion could be kept in the resultant composite by a reaction that took place at the nanoparticle surface and among the nanoparticles when epichlorohydrin was added. Furthermore, the slightly conglomerated nanoparticles could even be separated by epoxy resin growing among them. This method showed a better dispersion of nanoparticles compared with solution‐blending as observed with TEM. Owing to better combination of epoxy resin and nanoparticles, the resultant nanocomposite showed a 12 °C increase in Tg compared to the nanocomposite prepared by solution‐blending. Tensile test revealed that the tensile strain of nanocomposites rises as the nano‐CaCO3 content increases.

The dispersion mechanism of nanoparticles through in situ and inclusion polymerization.  相似文献   


15.
In this paper, we synthesized epoxy resin/CaCO3 nanocomposites through in-situ and inclusion polymerization, and the nanoparticles were well dispersed in the resin matrix observed by SEM. The effects of the nanoparticles on the properties of epoxy resin are discussed.  相似文献   

16.
Summary A way to prepare Poly (phenylene sulfide) (PPS) nanocomposite was introduced in the paper. The nanocomposite of PPS/CaCO3 can be prepared by melt mixing process. The dispersion of the CaCO3 nanoparticles in PPS was good when filler content below 5 wt %. Differential scanning calorimeter (DSC) and small-angle light scattering (SALS) results indicated that the CaCO3 nanoparticles could induce the nucleation but retard the mobility of polymer chains. The results of mechanical tests showed that a small amount of nanoparticles has resulted in a slight improvement in the tensile strength and a significantly 300% increase in the fracture toughness. We believe that the CaCO3 nanoparticles can act as stress concentration sites, which can promote cavitation at the particles boundaries during loading. The cavitation can trigger mass plastic deformation of the matrix, leading to much improve fracture toughness.  相似文献   

17.
The novel conductive nanocomposite has been successfully prepared by emulsion polymerization. First, magnetite nanoparticles were synthesized via coprecipitation reaction. Then, poly (indole-co-thiophene)@Fe3O4 nanocomposite was prepared via emulsion copolymerization of indole and thiophene monomers using sodium dodecyl sulfate as an emulsifier and ammonium persulfate as an oxidant in the presence of Fe3O4 nanoparticles. Characterization of the synthesized copolymer, Poly (In-co-T), and its magnetic nanocomposite were studied by Fourier transform infrared spectra, X-ray diffraction, scanning electron microscopy, thermal gravimetric analysis, differential scanning calorimetric, UV-vis spectrophotometer, and vibrating sample magnetometer. Also, the electrical conductivity of copolymer and nanocomposite were determined by four-probe instrument. Results showed a synergic effect in thermal stability by good interaction between polymer chain and magnetic nanoparticles. The conductivity of the nanocomposite was higher than bare copolymer, and increase of nanoparticles content caused an increment in the conductivity of the nanocomposites. The applicable properties of proposed conductive nanocomposite as a base at electrochemical biosensing have been investigated.  相似文献   

18.
19.
Epoxy resin/CaCO3 nanocomposites were prepared by the methods of extruding, solution blending, and in situ and inclusion polymerization, respectively. The contents of nanoparticles in the nanocomposites were varied from 5 wt % to 15 wt %. Powder coatings with different content of nanoparticles were made from the nanocomposites. The results showed that the cupping property and impact resistance decreased with the increase of coating film thickness. The dispersion of nanoparticles in epoxy matrix affected the impact resistance and cupping property of the obtained coating films greatly. The coating films made from the nanocomposite prepared by in situ and inclusion polymerization showed that the best impact resistance and the maximum cupping property was achieved when nano‐CaCO3 content was 5 wt %. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2656–2660, 2006  相似文献   

20.
A novel one-step synthetic route, the double in situ approach, is used to produce both TiO2 nanoparticles and polymer (PET), and simultaneously forming a nanocomposite with multi-functionality. The method uses the release of water during esterification to hydrolyze titanium (IV) butoxide (Ti(OBu)4) forming nano-TiO2 in the polymerization vessel. This new approach is of general significance in the preparation of polymer nanocomposites, and will lead to a new route in the synthesis of multi-functional polymer nanocomposites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号