首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 460 毫秒
1.
The influence of pressure on the bubble size and average bed voidage has been investigated experimentally and computationally in a circular three-dimensional cold-flow model of pressurized jetting fluidized bed of 0.2 m i.d. and 0.6 m in height with a central jet and a conical distributor, which roughly stands for the ash-agglomerating fluidized bed coal gasifier. The pressurized average bed voidage and bubble size in the jetting fluidized bed were investigated by using electrical capacitance tomography (ECT) technique. The time-averaged cross-sectional solids concentration distribution in the fluidized bed was recorded. The influence of pressure on the size of bubble and the average bed voidage in a pressurized fluidized bed was studied. Both experimental and theoretical results clearly indicate that there is, at the lower pressure, a small initial increase in bubble size decided by voidage and then a decrease with a further increase in pressure, which proves the conclusion of Cai et.al. [P. Cai, M. Schiavetti, G. De Michele, G.C. Grazzini, M. Miccio, Quantitative estimation of bubble size in PFBC, Powder Technology 80 (1994) 99-109]. At higher pressure, bubbles become smaller and smaller because of splitting. The average bed voidage increases gradually with the pressure at the same gas velocity. However, there is a disagreement between the experimental results and simulation results in the average bed voidage at the higher gas velocity, especially at the higher pressure. It suggests that the increase in density of gas with pressure may result in the drag increase and the drag model needs to be improved and revised at higher pressure.  相似文献   

2.
In this paper, the flow hydrodynamics in a bubbling fluidized bed with submerged horizontal tube bundle was numerically investigated with an open-source code: Multiphase Flow with Interphase eXchange (MFIX). A newly implemented cut-cell technique was employed to deal with the curved surface of submerged tubes. A series of 2D simulations were conducted to study the effects of gas velocity and tube arrangement on the flow pattern. Hydrodynamic heterogeneities on voidage, particle velocity, bubble fraction, and frequency near the tube circumferential surface were successfully predicted by this numerical method, which agrees qualitatively with previous experimental findings and contributes to a sounder understanding of the non-uniform heat transfer and erosion around a horizontal tube. A 3D simulation was also conducted. Significant differences between 2D and 3D simulations were observed with respect to bed expansion, bubble distribution, voidage, and solids velocity profiles. Hence, the 3D simulation is needed for quantitative prediction of flow hydrodynamics. On the other hand, the flow characteristics and bubble behavior at the tube surface are similar under both 2D and 3D simulations as far as the bubble frequency and bubble phase fraction are concerned. Comparison with experimental data showed that qualitative agreement was obtained in both 2D and 3D simulations for the bubble characteristics at the tube surface.  相似文献   

3.
should be addressed. The distributor was investigated for the purpose of design and scale up of large fluidized-bed combustors. Four orifice plates with different configurations were used to study the effect of distributor design on bubble formation and solid mixing. Experiments were carried out on a three-dimensional fluidized bed of 27.94 cm diameter and a two-dimensional bed with dimensions of 30.48cm ×1.27 cm. Motion pictures were used to study bubble formation and coalescence. Pressure profiles inside the three-dimensional bed were measured for several distributors to study bubble flow patterns, and tracer particles were used to study mixing patterns at various superficial velocities and particle sizes. The results show that the distributor plate with two-size orifices causes a non-uniform gas bubble flow inside the bed. This non-uniform gas bubble flow is associated with variations in local bed density and local voidage. Horizontal or radial solid circulation is also caused by this non-uniform gas bubble flow. The local bed density and voidage variations and the radial solid circulation cause the bubbles to move toward the area above the smaller orifices as the bubbles rise up and coalesce. This reduces the wall effect, and the bed is very uniformly fluidized when the two-size orifice plate with small holes in the center is employed.  相似文献   

4.
The hydrodynamic, heat and mass transfer characteristics of a pressurized co‐current gas‐solid magnetically fluidized bed (MFB) were systematically investigated considering major influence factors, such as magnetic field strength, superficial gas velocity, and operating pressure. It was shown that this pressurized gas‐solid MFB has the advantages of a wider operation range of the superficial gas velocity under bubble‐free particulate fluidization, a larger bed voidage with smaller pressure drop across the bed, and larger heat transfer efficiency, compared with a conventional fluidized bed. Moreover, the minimum bubbling velocity, gas‐solid mass, and heat transfer coefficients were correlated at high accuracy within the investigated range of operating conditions.  相似文献   

5.
6.
FCC细颗粒湍流流化床流体力学性能研究李俊,张蕴璧,闫遂宁(西安石油学院,西安710061)(西北大学)(洛阳石化公司)关键词:流化床,湍流,气泡,空隙率1前言湍流流化床有着广泛的工业背景。湍流流化床反应器存在着物质空间分布的不均匀现象,这种分布对湍...  相似文献   

7.
气固流化床DEM模拟中,通常采用面积加权平均法计算局部空隙率,为了考虑网格中显著非均匀结构对局部空隙率的影响,提出一个计算局部空隙率的两相两区模型。该模型将网格中的非均匀结构虚拟划分为稀相和密相,将实际网格区域划分为稀区和密区,并采用时空关联性原理识别稀区和密区;模型还采用自适应方法计算网格中颗粒分布的非均匀度;将非均匀度作为非均匀结构的影响权重计算密区颗粒的局部空隙率。模拟了鼓泡流化床,模拟结果表明:与传统的DEM相比,基于两相两区模型的DEM能更好地模拟气泡形态,且能捕捉气泡冒出床层和气泡破裂的复杂现象。  相似文献   

8.
引言提升管是非均匀结构显著的气固两相流动体系,其流动特性主要表现为轴向空隙率的"S"形分布、径向的"环-核"结构以及团聚物的生成和破碎等。近年来,国内外学者致力于数值计算方法的研究增多,其中双流体模型的应用最为广泛;颗  相似文献   

9.
引言提升管是非均匀结构显著的气固两相流动体系,其流动特性主要表现为轴向空隙率的S形分布、径向的"环-核"结构以及团聚物的生成和破碎等。近年来,有关数值计算方法的研究增多,其中双流体模型的应用最为广泛,颗粒动理学则是目前封闭控制方程的最合理有效的方法。  相似文献   

10.
The influence of solid-phase wall boundary condition in terms of specularity coefficient and particle–wall restitution coefficient on the flow behavior of spouted beds was investigated using two-fluid model approach in the computational fluid dynamics software FLUENT 6.3. Parametric studies of specularity coefficient and particle–wall restitution coefficient were performed to evaluate their effects on the flow hydrodynamics in terms of fountain height, spout diameter, pressure drop, local voidage and particles velocity. The numerical predictions were compared with available experimental data in the literatures to obtain the suitable values of specularity coefficient and particle–wall restitution coefficient for spouted beds. The simulated results show that the solid-phase wall boundary condition plays an important role in CFD modeling of spouted beds. The specularity coefficient has a pronounced effect on the spouting behavior and a small specularity coefficient (0.05) can give good predictions, while the particle–wall restitution coefficient is not critical for the holistic flow characteristics.  相似文献   

11.
Numerical simulations based on the Eulerian-Eulerian approach have been performed in the study of interphase heat transfer in a gas solid fluidized bed. The kinetic theory of granular flow (KTGF) has been used to describe the solid phase rheology. An assessment of drag models in the prediction of heat transfer coefficients shows that no major difference is observed in the choice of the drag model used. Fluctuations of the interphase heat transfer coefficient have been found to be closely related to the bubble motion in the bed. Effects of the wall boundary condition, inlet gas velocity, initial bed height and particle size on the predicted heat transfer coefficient have also been investigated. Typical temperature profiles in the bed show that thermal saturation is attained instantaneously close to the gas distributor. Simulated results of the coefficients are in fair agreement with those reported in literature.  相似文献   

12.
Solid and gas distributions are tomographically quantified as a function of position with high resolution in a series of laboratory fluid beds containing air and polyethylene particles. The resolution used is 0.4 mm by 0.4 mm by 3 mm. The laboratory models are Plexiglas columns of 10 cm in diameter and the settling bed L/D ratios vary between one and three. Large particles (up to 1.5 mm in diameter) of high density polyethylene and linear low density polyethylene are used. The superficial gas velocities vary from the minimum fluidization velocity to 50 cm/s. In this paper, the analysis of fluid bed CAT scanner images is extended to show bubble, emulsion and dense phase distribution. The analysis is also used to determine the bubble diameter and to predict the flow direction of solid particles as well as the velocity of descending solids. The voidage frequency distributions of a bed at different gas flow rates are compared to each other and the voidage threshold values corresponding to gas, emulsion and dense phases are determined. These threshold values are used to prepare ternary images that clearly show the parts of the bed cross-section corresponding to bubble, emulsion and dense phases.  相似文献   

13.
Distributor effects near the bottom region of turbulent fluidized beds   总被引:1,自引:0,他引:1  
The distributor plate effects on the hydrodynamic characteristics of turbulent fluidized beds are investigated by obtaining measurements of pressure and radial voidage profiles in a column diameter of 0.29 m with Group A particles using bubble bubble-cap or perforated plate distributors. Distributor pressure drop measurements between the two distributors are compared with the theoretical estimations while the influence of the mass inventory is studied. Comparison is established for the transition velocity from bubbling to turbulent regime, Uc, deduced from the pressure fluctuations in the bed using gauge pressure measurements. The effect of the distributor on the flow structure near the bottom region of the bed is studied using differential and gauge pressure transducers located at different axial positions along the bed. The radial voidage profile in the bed is also measured using optical fiber probes, which provide local measurements of the voidage at different heights above the distributor. The distributor plate has a significant effect on the bed hydrodynamics. Owing to the jetting caused by the perforated plate distributor, earlier onset of the transition to the turbulent fluidization flow regime was observed. Moreover, increased carry over for the perforated plate compared with the bubble caps has been confirmed. The results have highlighted the influence of the distributor plate on the fluidized bed hydrodynamics which has consequences in terms of comparing experimental and simulation results between different distributor plates.  相似文献   

14.
Radial profiles of solid concentration and velocity for concurrent downward gas-solid suspension in a140mm inside diameter fast fluidized bed were investigated.The influence of gas velocity,solid circulating rateand axial position on radial profiles of solid concentration and particle velocity has been examined.It hasbeen found that an annular region of high solid concentration exists at r/R=0.94.At both the center and wallregion,the solid concentration and the particle velocities are relatively low.The shape of radial solid con-centration profile curves is mainly dependent on the cross-section averaged voidage,and the shape of radialparticle velocity profile is mainly affected by the gas velocity and cross-section averaged voidage.Based on the radial profiles of solid concentration and particle velocity,the solid mass flux profile and thenonuniformity of solids flow are discussed in this paper.It is shown that solids flow in CDFFB is much moreuniform than that in UFFB.  相似文献   

15.
16.
The solid circulation pattern, the voidage profile, and the jet penetration height have been investigated experimentally and computationally in a cold-flow model of jetting fluidized beds (JFBs) of a binary mixture in this paper. This rectangular two-dimensional bed is 0.30 m wide and 2.05 m high with a central jet and a conical distributor, which roughly stands for the ash-agglomerating fluidized-bed coal gasifier. A video camera and coloured particle tracer method were employed to explore the fluid dynamics in the bed. In terms of the average physical properties of binary mixtures, a hydrodynamic model describing the gas-solid flow characteristics in a jetting bed is resolved by using a modified Semi-Implicit Method for Pressure-Linked Equation (SIMPLE) algorithm. This paper focuses on three features of the fluid dynamics—solid circulation pattern, voidage profile, and jet penetration height. The solid circulation pattern is composed of three regions: the jetting region, the bubble street, and the annular region. Above the central nozzle the time-averaged isoporosity contours are almost elliptic, while near the walls of the bed, the voidage in high solid concentration region is approximately equal to that at the minimum fluidization state. The jet penetration height increases with increasing jet gas velocity and with decreasing average particle diameter. The increase in weight percentage of the lighter component in the binary system reveals that reduction of average density causes the enlargement of jet penetration height. The simulated results show good agreement with the experimental data.  相似文献   

17.
将基于能量最小多尺度方法(EMMS)的曳力模型耦合到双流体模型中,并针对循环流化床内的气固两流动进行了模拟研究。采用全滑移壁面边界条件处理颗粒相,考察了3种网格尺度对轴向空隙率和出口颗粒循环量等气固流动特性的影响。计算结果表明,应用EMMS曳力模型处理相间作用力,同时在采用全滑移壁面边界条件处理颗粒相时,双流体模型能够正确预测轴向空隙率分布。采用网格尺寸为2.325 mm×20 mm时,模拟结果和实测数据吻合较好,表明在循环流化床的数值模拟中选择恰当的网格尺度是极为重要的。  相似文献   

18.
A novel phenomenological discrete bubble model was developed and tested for prediction of the hydrodynamic behavior of the dense phase of a 3D gas‐solid cylindrical fluidized bed. The mirror image technique was applied to take into account the effects of the bed wall. The simulation results were validated against experimental data reported in the literature that were obtained by positron emission particle tracking. The time‐averaged velocity profiles of particles predicted by the developed model were found to agree well with experimental data. The initial bubble diameter had no significant influence on the time‐averaged circulating pattern of solids in the bed. The model predictions clearly indicate that the developed model can fairly predict the hydrodynamic behavior of the dense phase of 3D gas‐solid cylindrical fluidized beds.  相似文献   

19.
Tube erosion in a bubbling fluidized bed is numerically studied using the Eulerian‐Eulerian method coupled with a monolayer kinetic energy dissipation model. The hydrodynamical simulations are performed under conditions with three different superficial gas velocities. The time‐averaged bubble frequency and bubble rise velocity are calculated to characterize the bed hydrodynamics. The erosion rates of two target tubes are simulated and the influence of the bubble behaviors on erosion rates is evaluated. Compared with the experimental data in the literature, the bubble behaviors are well captured by the simulations. Good agreement between the calculated and measured erosion rates is also obtained for the two target tubes. The bubble behaviors around the tubes have direct impact on the tube erosion. Only small discrepancies in the calculated erosion rates are found when using different particle‐wall restitution coefficients and specularity coefficients.  相似文献   

20.
以流化床应用为代表的气固流动系统是许多化工过程中的重要组成部分 ,CFD( computational fluid dynamics)方法能够为其优化设计和放大提供所需要的信息 .本文采用双欧拉模型 ,与 Gidaspow等的实验结果进行了对比 ,模拟了二维射流流化床内气泡的形成规律 ,得到了带锥型分布器的流化床内瞬时空隙率和气固相速度分布等流体力学参数 .对锥型分布器流化床的实验结果表明 ,模拟得到的气泡的形状与实验现象相接近 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号