首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Taeyi Choi  Ajay Padsalgikar 《Polymer》2009,50(10):2320-2706
Segmented polyurethane block copolymers were synthesized using 4,4′-methylenediphenyl diisocyanate (MDI) and 1,4-butanediol (BDO) as hard segments and various soft segments derived from poly(hexamethylene oxide) (PHMO) and poly(dimethylsiloxane) (PDMS)-based macrodiols and mixtures thereof. The microstructure and degrees of phase separation were characterized using a variety of experimental methods. Copolymers synthesized with the PDMS macrodiol and from PDMS/PHMO macrodiol mixtures were found to consist of three phases: a PDMS phase; hard domains; and a mixed phase of PHMO, PDMS ether end group segments and some dissolved hard segments. Two models were used to characterize the small-angle X-ray scattering from these copolymers: pseudo two-phase and core-shell models. Analysis using both methods demonstrates that as the PDMS content in the soft segment mixture increases, the greater the fraction of hard segments involved in hard domains than are dissolved in the mixed phase. Findings from analysis of the carbonyl region of FTIR spectra are also in agreement with greater hard/soft segment demixing in copolymers containing higher PDMS contents.  相似文献   

2.
In this paper we explore the temperature dependence of segregation of hard and soft segments of selected segmented polyurethane copolymers using synchrotron small-angle X-ray scattering (SAXS). The copolymers are composed of the same hard segments but three different soft segment chemistries, of particular interest in biomedical device applications. Hard segments are formed from 4,4′-methylenediphenyl diisocyanate and 1,4-butanediol, and soft segments from an aliphatic polycarbonate [poly(1,6-hexyl 1,2-ethyl carbonate)], poly(tetramethylenoxide), or a mixed soft segment synthesized from hydroxyl-terminated poly(dimethylsiloxane) [PDMS] and poly(hexamethylenoxide) macrodiols. The changes in SAXS relative invariants and interdomain spacings are indicative of gradual dissolution of phase separated hard and soft segments with increasing temperature. All copolymers investigated herein, even those containing PDMS soft segments, transform to the single-phase state at a temperature determined by the soft segment chemistry (and hard segment content). The SAXS findings, along with those from parallel temperature-controlled Fourier Transform infrared spectroscopy measurements, also facilitate assignment of the origin of the thermal events observed in the DSC thermograms of these materials.  相似文献   

3.
Phase Behavior and Mechanical Properties of Siloxane-Urethane Copolymer   总被引:1,自引:1,他引:1  
Two series of siloxane-urethane copolymers were prepared from polydimethylsiloxane (PDMS) with a molecular weight of 1000 or 1800 which was used as a soft segment, 4,4′-diphenylmethane diisocyanate (MDI) and 1,4-butanediol (1,4-BD). Differential scanning calorimetry (DSC) demonstrated that the position (Tgs) and breadth (ΔB) of soft-segment glass transition of copolymers remained constant as the hard-segment content increased. Heat capacities at soft-segment glass transition of the copolymer (ΔCp) were 0.195∼0.411 J/gC and heat capacities of pure PDMS (ΔCp0) were 0.571∼0.647 J/gC, leading to the various ΔCp/ΔCp0 ratios. The ΔCp/ΔCp0 ratios decreased as the increasing of hard-segment content, showing poor phase separation. The FTIR spectrum confirmed the occurrence of hydrogen bonding in ether end-group of pure PDMS. The ether group of the soft segment led to interfacial mixing between soft and hard segments. The tan δ of the soft segment determined by dynamic mechanical testing (DMA) also identified the mixing of soft and hard segments. The mechanical properties of the copolymer were directly related to either the soft and hard segment contents or the chain lengths of soft and hard segments. The hard segment that reinforced the soft segment and interfacial thickness between soft and hard segment dominated the mechanical properties.  相似文献   

4.
Polyurethane (PU) block copolymers were synthesized using prepared hydroxypropyl terminated polydimethylsiloxane (HTPDMS MW 990) and polyether diols (N‐210) as soft segment with 4,4′‐diphenylmethane diisocyanate (MDI) and 1,4‐butanediol. This low molecular weight polydimethylsiloxanes (PDMS) containing hydroxypropyl end‐groups displayed better compatibility with PU than common PDMS. In this article, we illustrate its synthesis routes and confirmed the proposed molecular structures using NMR and infrared radiation (IR). We varied the contents of HTPDMS and N‐210 in soft segments (HTPDMS—N‐210: 0 : 100, 20 : 80, 40 : 60, 60 : 40, 80 : 20, and 100 : 0) to synthesize a series of PDMS‐PU copolymer. IR spectroscopy showed the assignment characteristic groups of each peak in copolymers and confirmed that the desired HTPDMS‐PU copolymers have been prepared. The different thermal, dynamic mechanical and surface properties of the copolymers were compared by thermogravimetry, DMA, contact angle and solvent resistance. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

5.
This study reports the synthesis of polyurethane–imide (PU–imide) copolymers using 4,4′-diphenylmethane diisocyanate (MDI) polytetramethylene glycols (PTMGs) and different aromatic dianhydrides. Differential scanning calorimetry (DSC) results indicate that PU–imide copolymers had two phase structures containing four transition temperatures (Tgs, Tms, Tgh and Tmh). However, only PU–imide copolymers were formed by soft PTMG(2000) segments possessing a Tms (melting point of soft segment). When different aromatic dianhydrides were introduced into the backbone chain of the polyurethane, although the Tgs (glass transition temperature of the soft segment) of some of PU–imide copolymers did not change, the copolymers with long soft segments had low Tgs values. The Tgh (glass transition temperature of hard segment) values of PU–imide copolymers were higher than that of polyurethane (PU). In addition, the high hard segment content of PU–imide copolymer series also had an obvious Tmh (melting point of hard segment). According to thermogravimetric analysis (TGA) and differential thermogravimetric analysis (DTGA), the PU–imide copolymers had at least two stages of degradation. Although the Tdi (initial temperature of degradation) depended on the hard segment content and the composition of hard segment, the different soft segment lengths did not obviously influence the Tdi. However, PU–imide copolymers with a longer soft segment had a higher thermal stability in the degradation temperature range of middle weight loss (about Td 5%–50%). However, beyond Td 50% (50% weight loss at temperature of degradation), the temperature of degradation of PU–imide copolymers increased with increasing hard segment content. Mechanical properties revealed that the modulus and tensile strength of PU–imide copolymers surpassed those of PU. Wide angle X-ray diffraction patterns demonstrated that PU–imide copolymers are crystallizable. © 1999 Society of Chemical Industry  相似文献   

6.
Advance polyamide‐6‐b‐polydimethylsiloxane (PA6‐b‐PDMS) multiblock copolymers were first synthesized via the polymerization in bulk. Binary carboxyl terminated PA6 was served as the hard segment and PDMS modified with hexamethylene diisocyanate (PDMS‐NCO) was the soft segment. A series of PA6‐b‐PDMS copolymers based on different content and length of soft segments were obtained. Interestingly, Differential scanning calorimetry (DSC) studies revealed no obvious change in melting temperature after introducing PDMS segments to copolymers. The high melting temperatures indicated these copolymers possess potential applications in automotive industry that require high continuous use temperatures. DSC and transmission electron microscopy studies both demonstrated increasing the length and the content of the soft segment contributed to increasing of the degree of microphase separation. However, the improvement of thermal stability resulting from PDMS segments was also observed by thermo gravimetric analysis. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41114.  相似文献   

7.
Poly(propylene oxide) (PPO) was incorporated in a controlled manner between poly(dimethylsiloxane) (PDMS) and urea segments in segmented polyurea copolymers and their solid state structure-property behavior was investigated. The copolymers contained PDMS segments of MW 3200 or 7000 g/mol and an overall hard segment content of 10-35 wt%. PPO segments of MW 450 or 2000 g/mol were utilized. Equivalent polyurea copolymers based on only PDMS as the soft segment (SS) component were used as controls. The materials (with or without PPO) utilized in this study were able to develop microphase morphology as determined from dynamic mechanical analysis (DMA) and small angle X-ray scattering (SAXS). DMA and SAXS results suggested that the ability of the PPO segments to hydrogen bond with the urea segments results in a limited inter-segmental mixing which leads to the formation of a gradient interphase, especially in the PPO-2000 co-SS containing copolymers. DMA also demonstrated that the polyureas based on only PDMS as the SS possessed remarkably broad and nearly temperature insensitive rubbery plateaus that extended up to ca. 175 °C, the upper temperature limit depending upon the PDMS MW. However, the incorporation of PPO resulted in more temperature sensitive rubbery plateaus. A distinct improvement in the Young's modulus, tensile strength, and elongation at break in the PPO-2000 and PDMS-7000 containing copolymers was observed due to inter-segmental hydrogen bonding and the formation of a gradient interphase. However, when PPO was incorporated as the co-SS, the extent of stress relaxation and mechanical hysteresis of the copolymers increased relative to the segmented polyureas based on the utilization of only PDMS as the soft segment component.  相似文献   

8.
Novel, segmented thermoplastic silicone–urea (TPSU) copolymers based on rather high molecular weight aminopropyl terminated polydimethylsiloxane (PDMS) soft segments (<Mn> 10,800 and 31,500 g/mol), a cycloaliphatic diisocyanate (HMDI) and various diamine chain extenders were synthesized. Copolymers with very low urea hard segment contents of 1.43–14.4% by weight were prepared. In spite of very low hard segment contents, solution cast films showed very good microphase separation and displayed reasonable mechanical properties. Tensile strengths of TPSU copolymers showed a linear dependence on their urea hard segment contents, regardless of the structure of the diamine chain extender used. The modulus of silicone–urea copolymers is dependent on the urea concentration, but not on the extender type or PDMS molecular weight. When silicone–urea copolymers with identical urea hard segment contents were compared, copolymers based on PDMS-31,500 showed higher elongation at break values and ultimate tensile strengths than those based on PDMS-10,800. Since the critical entanglement molecular weight (Me) of PDMS is about 24,500 g/mol, these results suggest there is a significant contribution from soft segment chain entanglement effects in the PDMS-31,500 system regarding the tensile properties and failure mechanisms of the silicone–urea copolymers.  相似文献   

9.

Abstract  

Molecular dynamics and mesoscale dynamics simulation techniques were used to investigate the effect of hydrogen bonding on the microphase separation, morphology and various physicochemical properties of segmented silicone-urea copolymers. Model silicone-urea copolymers investigated were based on the stoichiometric combinations of α,ω-aminopropyl terminated polydimethylsiloxane (PDMS) oligomers with number average molecular weights ranging from 700 to 15,000 g/mole and bis(4-isocyanatocyclohexyl)methane (HMDI). Urea hard segment contents of the copolymers, which were determined by the PDMS molecular weight, were in 1.7–34% by weight range. Since no chain extenders were used, urea hard segments in all copolymers were of uniform length. Simulation results clearly demonstrated the presence of very good microphase separation in all silicone-urea copolymers, even for the copolymer with 1.7% by weight hard segment content. Experimentally reported enhanced properties of these materials were shown to stem from strong hydrogen bond interactions which leads to the aggregation of urea hard segments and reinforcement of the PDMS.  相似文献   

10.
Imidazolium ionene segmented block copolymers were synthesized from 1,1′-(1,4-butanediyl)bis(imidazole) and 1,12-dibromododecane hard segments and 2000 g/mol PTMO dibromide soft segments. The polymeric structures were confirmed using 1H NMR spectroscopy, and resonances associated with methylene spacers from 1,12-dibromododecane became more apparent as the hard segment content increased. TGA revealed thermal stabilities ≥250 °C for all imidazolium ionene segmented block copolymers. These ionene segmented block copolymers containing imidazolium cations showed evidence of microphase separation when the hard segment was 6-38 wt%. The thermal transitions found by DSC and DMA analysis found that the Tg and Tm of the PTMO segments were comparable to PTMO polymers, namely approximately −80 °C and 22 °C, respectively. In the absence of PTMO soft segments the Tg increased to 27 °C The crystallinity of the PTMO segments was further evidence of microphase separation and was particularly evident at 6, 9 and 20 wt% hard segment, as indicated in X-ray scattering. The periodicity of the microphase separation was well-defined at 20 and 38 wt% hard segment and found to be approximately 10.5 and 13.0 nm, respectively, for these ionenes wherein the PTMO soft segment is 2000 g/mol. Finally, the 38 and 100 wt% hard segment ionenes exhibited scattering from correlations within the hard segment on a length scale of approximately 2-2.3 nm. These new materials present structure on a variety of length scales and thereby provide various routes to controlling mechanical and transport properties.  相似文献   

11.
The influence of the extent of hydrogen bonding in mediating the long-range connectivity and percolation of the hard segment phase in model tri-segment oligomeric polyurethanes (PU) was explored by using LiCl as a molecular probe. A 22 wt% hard segment containing model PU plaque based on a mono-functional oligomeric polyether, 80:20 2,4:2,6 isomeric mixture of toluene diisocyanate, and water as a chain extender was employed. Samples cast from 20 wt% solutions in dimethyl acetamide were utilized. The tapping-mode atomic force microscopy (AFM) phase image of the solution cast film sample (soft segment Tg −63 °C) without LiCl exhibited the presence of long interconnected ribbon-like hard domains. The long-range connectivity and percolation of the hard phase that arose during plaque formation gave rise to a brittle rigid solid. A systematic break-up of the hard domains was also observed by AFM when the concentration of LiCl was increased from 0.1 to 1.5 wt%. DSC analysis indicated that the samples were able, however, to maintain a microphase separated morphology even at the highest LiCl concentration utilized in the study. FT-IR data confirmed that LiCl interacts with the hard domains of the model PU samples by disrupting the hydrogen bonding capability of the urea hard segments. A systematic softening of the samples was observed with increasing LiCl content as confirmed by thermomechanical analysis. Thus, this study indicates that hydrogen bonding plays an important role in assisting the hard segments in PU to develop long-range connectivity and percolation of this phase through the soft matrix.  相似文献   

12.
Two series of polyurethanes and polyurethaneureas were prepared using a two‐step bulk‐solution polymerization procedure. Each series consisted of three polymers based on three molecular weights of α,ω‐bis(6‐hydroxyethoxypropyl) polydimethylsiloxane (PDMS): 940, 1913, and 2955. The soft segment in all cases was an 80:20 mixture of PDMS and poly(hexamethylene oxide) (MW 700), and the hard segment was based on 4,4′‐methylenediphenyl diisocyanate and mixed chain extenders (40 wt %). In the polyurethane (PU) series the chain extender was a 60:40 (mol) mixture of BDO and 1,3‐bis(4‐hydroxybutyl)1,1,3,3‐tetramethyldisiloxane (BHTD), whereas in the polyurethaneurea (PUU) series it was a 60:40 (mol) mixture of BHTD and 1,2‐ethylenediamine. The polymerization was carried out by preparing a prepolymer using a bulk polymerization procedure followed by chain extension in a solution of N,N‐dimethylacetamide. Polymers were characterized by size‐exclusion chromatography, tensile testing, differential scanning calorimetry (DSC), and dynamic mechanical thermal analysis (DMTA). The number‐average molecular weights of the polymers in the PU series were in the range of 114,300–124,500, whereas they were in the 78,400–103,300 range for the PUU series. Polymers with good clarity and mechanical properties were obtained with PDMS‐940 and PDMS‐1913, but those obtained from PDMS‐2955, despite having good tensile strength, had a low percentage of elongation, high modulus, and poor clarity. DSC and DMTA results indicated that regardless of the PDMS molecular weight, the siloxane segments existed as a highly phase‐separated state. This poor compatibility was consistent with the low solubility of PDMS compared to that of the hard‐segment‐forming components. The polymers in the polyurethane series exhibited multiple melting endotherms, attributed to the melting of ordered domains from different hard segments. The combined heats of fusion were similar for the materials in the PU series. In contrast, the polymers in the PUU series showed a hard‐segment order that was significantly less defined, with the heat of fusion approximately a third to a half that of the materials in the polyurethane series. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1565–1573, 2003  相似文献   

13.
M El Fray  V Altstädt 《Polymer》2003,44(16):4643-4650
The ‘dynamic creep’ behaviour of poly(aliphatic/aromatic-ester) (PED) multiblock copolymers has been evaluated by the hysteresis measurements method. The effect of the hard/soft segments concentration on the microphase separation in PED copolymers was determined by means of differential scanning calorimetry. The ‘dynamic creep’ of PED copolymers has been compared with poly(ether-ester) and segmented polyurethanes indicating on the good creep behaviour of PEDs compared to those materials. It was found that the hard segment content influences the creep behaviour of PED copolymers at ambient and elevated temperature indicating that stiffer materials are less susceptible to environmental conditions than polymers containing a high amount of the soft phase. PED copolymers compare very well with commercially available poly(ester-ethers) and show much lower creep compared to poly(ether-urethanes).  相似文献   

14.
Effect of polydimethylsiloxane (PDMS) soft segment molecular weight (Mn = 3200, 10,800 and 31,500 g/mol) and urea hard segment content (2.0-11.4% by weight) on the hysteresis and permanent set behavior of segmented silicone-urea (TPSU) copolymers were investigated. In spite of very low hard segment contents, all copolymers formed self-supporting films and displayed good mechanical properties. When the mechanical hysteresis and set behavior of the silicone-urea copolymers with similar hard segment contents (around 7.5% by weight) but based on PDMS-3K, PDMS-11K and PDMS-32K were compared, it was very clear that as the PDMS molecular weight increased, hysteresis and instantaneous set values decreased significantly. Copolymers based on the same silicone soft segment (PDMS-11K or PDMS-32K) but with different hard segment contents showed a linear increase in hysteresis and a slight decrease in the instantaneous set as a function of hard segment content. Constant initial stress creep experiments also showed lower creep as the PDMS segment molecular weight increased for copolymers with similar urea contents. Since the critical entanglement molecular weight (Me) of PDMS is stated to be 24,500 g/mol, our results tend to suggest important contribution of chain entanglements on the hysteresis and instantaneous set of these silicone-urea copolymers.  相似文献   

15.
A series of thermoplastic elastomers based on ethylene oxide‐poly(dimethylsiloxane)‐ethylene oxide (EO‐PDMS‐EO), as the soft segment, and poly(butylene terephthalate) (PBT), as the hard segment, were synthesized by catalyzed two‐step, melt transesterification reaction of dimethyl terephthalate (DMT) with 1,4‐butanediol (BD) and α,ω‐dihydroxy‐(EO‐PDMS‐EO). Copolymers with a content of hard PBT segments between 40 and 90 mass % and a constant length of the soft EO‐PDMS‐EO segments were prepared. The siloxane prepolymer with hydrophilic terminal EO units was used to improve the miscibility between the polar comonomers, DMT and BD, and the nonpolar PDMS. The molecular structure and composition of the copolymers were determined by 1H‐NMR spectroscopy, whereas the effectiveness of the incorporation of α,ω‐dihydroxy‐(EO‐PDMS‐EO) into the copolymer chains was verified by chloroform extraction. The effects of the structure and composition of the copolymers on the melting temperatures and the degree of crystallinity, as well as on the thermal degradation stability and some rheological properties, were studied. It was demonstrated that the degree of crystallinity, the melting and crystallization temperatures of the copolymers increased with increasing mass fraction of the PBT segments. The thermal stability of the copolymers was lower than that of PBT homopolymer, because of the presence of thermoliable ether bonds in the soft segments. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

16.
This paper describes the influence of mixed poly(tetramethylene oxide) (PTMO) soft segments on microphase separation and morphology, hydrogen bonding, and polymer transitions for a series of alternating polyurea copolymers prepared from a single modified diphenylmethane diisocyanate. The fraction of two PTMO soft segments [with molecular weight = 1000 and 250 g/mol] was systematically varied and incorporated during bulk polymerization. ATR-FTIR spectroscopy confirmed that the intended polymers were synthesized and was used to determine the state of the local hydrogen bonding in these copolymers. Systematic changes in hard domain microstructure as a function of soft segment composition were clearly observed in AFM tapping mode phase images: the polyureas become progressively disordered with increasing content of the shorter PTMO. This was confirmed in a quantitative fashion using small-angle X-ray scattering. Results from dynamic mechanical analysis experiments reveal rather significant changes in dynamic segmental relaxations and storage moduli at 25 °C for this series of polyureas, which are in keeping with the findings from other experiments.  相似文献   

17.
This article investigated thermal transition and morphology utilizing differential scanning calorimetry (DSC), which was performed on silicon‐containing and phosphorus‐containing segmented polyurethane (Si‐PU and P‐PU). The hard segments of those Si‐PU and P‐PU polymers investigated consisted of 4,4′‐diphenylmethane diisocyanate (MDI) and diphenylsilanediol (DSiD), MDI, and methylphosponic (MPA), respectively. The soft segment of those polymers comprised polytetramethylene ether glycol, with an average molecular weight of 1000 or 2000 (PTMG 1000 and PTMG 2000, respectively). Several thermal transitions appeared for on the Si‐PU and P‐PU polymers, reflecting both the soft‐segment and hard‐segment phases. The Si‐PU and P‐PU polymers with a lower hard‐segment content exhibited a high degree of phase separating as indicated by the constancy of both the soft‐segment glass transition temperature (Tgs) and the breadth of transition zone (ΔB). The polymers in which PTMG 2000 was used as the soft segment generally exhibited a crystalline melting endotherm about 10°C, while crystallization usually disappeared upon melt quenching. The hard segments of the Si‐PU and P‐PU polymers displayed multiple endotherms. The first endotherm was related to a short‐range ordering of the hard segment domain (Region I), and the second endotherm was ascribed to a long‐range ordering of the domain (Region II). The wide‐angle X‐ray demonstrated that the structure in Region I and Region II was almost completely amorphous. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 3489–3501, 2001  相似文献   

18.
Novel segmented copolymers were synthesized using aminopropyl terminated linear poly(dimethylsiloxane) oligomers as the soft component and various diisocyanates as the hard segments. As a result of the large differences in the cohesive energy density (solubility parameter) between the two components, phase separation occurs to form a microdomain structure at relatively low oligomer molecular weights. Since chain extenders were not employed during the synthesis, the “hard” segments are strictly related to the length of the diisocyanate moiety utilized in the reaction, In this paper we utilize these copolymers as reasonable models for investigating the various methods available for determining the interfacial layer thickness between the hard and soft phase. Specifically, in these systems there is no hard segment length distribution as is the usual case for segmented urethanes. Utilizing Porod's law, and appropriate analysis, both positive and negative deviations were found in the systematic series of copolymers. The degree of positive and negative character was found to be dependent upon copolymer composition. Negative deviations were accounted for in terms of a finite interfacial thickness, which turned out to be relatively small as anticipated, while the positive deviations were assigned to isolated hard segments that reside within the soft segment matrix, i.e., concentration fluctuations. In calculating the interfacial thickness, several methods were applied and in general, close agreement was obtained. Finally, correlation function analysis in conjunction with determination of the coherent Porod lengths, etc. were determined and discussed accordingly. Cautionary comments are also provided for researchers who apply less complete small angle x-ray scattering (SAXS) analysis to related block or segmented copolymers with regard to phase separation behavior.  相似文献   

19.
A series of polyurethane block copolymers based on hydroxy-terminated polydimethylsiloxane and poly(propylene glycol) soft segments of molecular weights 1818 and 2000, respectively, were synthesized. The hard segments consisted of 4,4′-diphenylnethane diisocyanate and 1,4-butanediol as the chain extender. Samples with different molar ratios were prepared. We tried to synthesize polydimethylsiloxane-based polyurethanes (PDMS-PU) containing a hard block as major fraction and a soft block as minor fraction for preparing toughened rigid systems. After a study of the pure polydimethylsiloxane-based polyurethane and poly(propylene glycol)-based polyurethane (PPG-PU), (mixed polyol)-based block copolymers and blends of PDMS-PU and PPG-PU were synthesized, and characterized by means of differential scanning calorimetry, tensile testing and scanning electron microscopy. In (mixed polyol)-based copolymers and lower hard-segment content blends, macro-phase separation occurred, but blends with higher hard-segment contents showed significant reduction in amounts of phase separation.  相似文献   

20.
Structure–property relationships of segmented block copolyetheramides based on nylon 6 and polyoxypropylene (POP) were investigated as a function of the compositions and block lengths of the hard and soft segments by using differential scanning calorimetry, dynamic mechanical analysis, FT-IR spectroscopy, wide angle x-ray diffractometry (WAXD), and tensile testing. The nylon 6–D4 copolymers with the shortest soft segment exhibited the two-phase structure of a crystalline nylon 6 phase and an amorphous phase composed of the hard and soft segments. Also they showed the tensile properties characteristic of a plasticized thermoplastic. On the other hand, the nylon 6–D20 and nylon 6–D40 copolymers exhibited the three-phase structure of a crystalline nylon 6 phase, an amorphous nylon 6-rich phase, and an amorphous POP-rich phase. The nylon 6–D20 copolymers had better elastic properties with the increase of soft segment content; however, the nylon 6–D40 copolymers with the longest soft segment showed a substantial reduction of the elongation at break due to lack of the crosslinking density. © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号