首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work examines the effects of modification of activated carbons (ACs) by HNO3 oxidation and gas-phase O2 oxidation, respectively, on the liquid-phase adsorption of sulfur compounds in diesel fuel. The adsorption characteristics of the oxidized and the original AC samples were evaluated in a fixed-bed flow system by using a model diesel fuel containing 400 parts per million by weight (ppmw) of sulfur as thiophenic compounds and 10 wt% of aromatics in a paraffinic solvent. The pore structure and surface properties of the AC samples were characterized by N2 adsorption, SEM, FTIR, XPS and surface pH measurements. The adsorptive selectivity factor of the AC samples increases in the order of benzothiophene (BT) ≈ naphthalene (Nap) < 2-methyl naphthalene (2-MNap) < dibenzothiophene (DBT) < 4-methyldibenzothiophene (4-MDBT) < 4,6-dimethyldibenzothiophene (4,6-DMDBT). It was found that the HNO3 oxidation was an efficient method in improvement of the adsorption performance of the AC for sulfur compounds. The improved adsorption performance upon the HNO3 oxidation can be attributed mainly to an increase in the acidic oxygen-containing functional groups. However, the improved adsorption capacity upon oxidation is unlikely due to an increase in mesoporous or microporous surface/volume, although such attribution might have been inferred from the literature. An excellent correlation between the concentration of the surface oxygen-containing functional groups and the adsorption capacity per unit area as well as a good relationship between the adsorption capacity and the surface pH value were observed in this work, which suggest that the adsorption of the sulfur compounds over AC from the liquid hydrocarbon fuel may involve an interaction of the acidic oxygen-containing groups on AC with the sulfur compounds.  相似文献   

2.
The effects of polarization on properties of activated carbon cloth (ACC) have been investigated systematically. The polarization-treated ACC samples were prepared by polarizing them in Na2SO4 or KH2PO4/KOH buffer solutions at potentials from −1.5 to 5.0 V. The properties, such as surface area, pore size distribution (PSD), total pore volume, amount and nature of the surface functional groups and surface acidity, of pristine and polarization-treated ACC samples were determined. The samples were also characterized electrochemically by determining the properties such as specific capacitance and potential at point of zero charge (EPZC). Anodic polarization in different electrolytes was found to cause oxidation on ACC. Although the surface textural properties did not change considerably, the changes took place in chemical and electrochemical properties upon anodic polarization were found to be important. The increase in surface acidity shifted the pHPZC from 7.40 to 3.21 and EPZC from 164 to 355 mV. The optimum potential range, considered to be safe for polarization of ACC, was determined as −1.5 to +0.8 V.  相似文献   

3.
The effect of zinc oxide loading to granular activated carbon on Pb(II) adsorption from aqueous solution was studied in comparison with zinc oxide particles and oxidized activated carbon. Cu(II), Cd(II) and nitrobenzene were used as reference adsorbates to investigate the adsorption. The BET surface area and point of zero charge (pHPZC) in the aqueous solution were measured for the adsorbents. The adsorption isotherms were examined to characterize the adsorption of heavy metals and organic molecules. The heavy metal adsorption was improved by both the zinc oxide loading and the oxidation of activated carbon. In contrast, the adsorption of nitrobenzene was considerably reduced by the oxidation, and slightly decreased by the zinc oxide loading. The zinc oxide loading to the activated carbon was found to be effectively used for the Pb(II) adsorption whereas only a part of surface functional groups was used for the zinc oxide particles and the oxidized activated carbon. From the experimental results, the surface functional groups responsible for the Pb(II) adsorption on the zinc oxide loaded activated carbon were considered to be hydroxyl groups that formed on the oxide, while those on the oxidized activated carbon were considered to be carboxylic groups.  相似文献   

4.
《分离科学与技术》2012,47(13):1940-1951
To clarify the inconsistent behavior of the literatures’ results, the impact of various Activated carbon (AC) oxygen functional groups (OFGs) were assessed systematically on the adsorption of thiophenic compounds (TCs). AC samples were oxidized with HNO3 and, afterwards, heat treated to load different OFGs. The adsorption capacity of TCs increases in the range of 30-100% by oxidation at 25°C. At severe oxidation condition the adsorption capacity decreases 17.2-100% due to pore blocking. As methyl group or aromatic ring of adsorbate molecules increases, the most likely adsorption mechanism will be interaction to active site, whereas dispersion interaction is the governing adsorption mechanism of adsorbate molecules with lower number of aromatic ring.  相似文献   

5.
Polyacrylonitrile- and rayon-based activated carbon fibers (ACFs), subject to heat treatment over 600–1,100°C under N2 flow, were investigated using a number of surface analytical methods, including N2 adsorption isotherm, elemental analysis, and X-ray photoelectron spectroscopy. The adsorption capacities of benzene, carbon tetrachloride, and water vapor on as-received and heat-treated ACFs were determined. Results show that the ACFs under study were highly microporous but heat-treated ACFs contained more mesopores in the range of 20–30 Å for PAN-based and 30–45 Å for rayon-based. It can be seen that the high-resolution αs plot provided valuable information about structure properties. The pore size distributions of ACFs gave insight into the pore development with heat treatment temperature. Besides, phenolic groups were found to be the most abundant oxygen-containing functional groups on the surface of both ACFs. The vapor adsorptions on ACFs indicated that molecular size and polarity of vapors, as well as the microstructure and chemistry of ACFs profoundly influenced the adsorption performance.  相似文献   

6.
Modifications of commercial activated carbons by chemical treatment with HNO3 or HCl and HF and the adsorption behavior of simple aromatic compounds (aniline, pyridine, phenol, and benzene) on activated carbon and modified activated carbon were investigated. The results show that the textural properties change a little after these modifications, but the surface acidity (mainly oxygen‐containing groups) of activated carbon modified with HNO3 increases greatly. The effect of ash of activated carbon on adsorption of the organic compounds mentioned above is insignificant. However, addition of surface acidity (mainly surface oxygen‐containing groups) decreases the adsorption capacity of compounds significantly. The adsorption uptake of compounds on activated carbon with oxidation of HNO3 is low possibly due to dispersive interaction, water cluster blocking, or competition between water and compounds adsorbed on activated carbon's surface because of hydrophilic increase of the activated carbon surface. The solubility of aromatic compounds in water has an important effect on the adsorption capacity of activated carbon. qm and KL (Langmuir adsorption parameters) for the aromatic compounds vary similarly.  相似文献   

7.
The effects of dry and wet oxidation treatments of activated carbon (AC) on the surface chemistry and porous structure are studied. Using cherry stones (CS), AC was first prepared by carbonization at 900 °C for 2 h in N2 and activation at 850 °C for 2 h in CO2. Then, the resulting AC was oxidized in O2(air) or O3 atmosphere and with HNO3 and H2O2 solutions. The acidic-basic surface sites were analyzed by FT-IR spectroscopy, Boehm method, and pH of the point of zero charge (pHpzc) and the porous structure by N2 adsorption and mercury porosimetry. It has been found that the oxidizing agent, under specific reaction conditions, rather than whether it was a gas or a solute in aqueous solution, is the main factor that controls the changes produced in the surface chemistry and porous structure of AC. O3 and HNO3 are the most effective oxidants to form acidic oxygen surface groups. However, the content of basic groups decreases for the four oxidants, the effect being much stronger for HNO3. A microporosity reduction is also observed, which is more important for O2(air) and especially for HNO3 than for O3 and H2O2. The percentage of microporosity loss is as high as 43.3 for HNO3. Mesoporosity significantly develops, whereas macroporosity usually remains practically unchanged. Dry oxidation of AC at 100 °C in O3 has proved to be the most promising method to increase the content of acidic oxygen surface groups in the material without greatly decreasing the content of basic sites and microporosity and with a significant mesoporosity development.  相似文献   

8.
《分离科学与技术》2012,47(12):2751-2766
Abstract

Single‐walled carbon nanotubes (SWCNTs) were oxidized by HCl, HNO3 and NaClO solutions and were selected as adsorbents to study their characterizations and adsorption properties of isopropyl alcohol (IPA) vapor from air streams. The physicochemical properties of SWCNTs were greatly changed after oxidation by HNO3 and NaClO solutions. These modifications include the increase in surface functional groups and surface basic sites, which enhance the chemisorption capacity of IPA, and the decrease in pore size and the increase in surface area of micropores, which improve the physisorption capacity of IPA. The maximum IPA adsorption capacities of SWCNTs, SWCNTs(HCl), SWCNTs(HNO3) and SWCNTs(NaClO) calculated by Langmuir model are 63.48, 54.34, 72.99, and 103.56 mg/g, respectively. The SWCNTs(NaClO) show the best performance of IPA removal and their adsorption mechanism appears mainly attributable to physical force with a relatively low influent IPA concentration but appears attributable to both physical and chemical forces with a relatively high influent IPA concentration.  相似文献   

9.
Metal ion contamination of drinking water and waste water, especially with heavy metal ion such as lead, is a serious and ongoing problem. In this work, activated carbon prepared from peanut shell (PAC) was used for the removal of Pb^2+ from aqueous solution. The impacts of the Pb25 adsorption capacities of the acid-modified carbons oxidized with HNO3 were also investigated. The surface functional groups of PAC were confirmed by Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), Boehm titration. The textural properties (surface area, total pore volume) were evaluated from the nitrogen adsorption isotherm at 77 K. The experimental results presented indicated that the adsorption data fitted better with the Langmuir adsorption model. A comparative study with a commercial granular activated carbon (GAC) showed that PAC was 10.3 times more efficient compared to GAC based on Langmuir maximum adsorption capacity. Further analysis results by the Langmuir equation showed that HNO3 [20% (by mass)] modified PAC has larger adsorption capacity of Pb^2+ from aqueous solution (as much as 35.5 mg·g^-1). The adsorption capacity enhancement ascribed to pore widening, increased cation-exchange capacity by oxygen groups, and the promoted hydrophilicity of the carbon surface.  相似文献   

10.
Commercial multi-walled carbon nanotubes (CNT) were functionalized by oxidation with HNO3, to introduce oxygen-containing surface groups, and by thermal treatments at different temperatures for their selective removal. The obtained samples were characterized by adsorption of N2 at -196°C, temperature-programmed desorption and determination of pH at the point of zero charge. CNT/poly(vinylidene fluoride) composites were prepared using the above CNT samples, with different filler fractions up to 1 wt%. It was found that oxidation reduced composite conductivity for a given concentration, shifted the percolation threshold to higher concentrations, and had no significant effect in the dielectric response.  相似文献   

11.
Adsorption process is acknowledged as an effective option for phenolic wastewater treatment. In this work, the activated carbon(AC) samples after thermal modification were prepared by using muffle furnace. The phenol adsorption kinetics and equilibrium measurements were carried out under static conditions at temperature ranging from 25 to 55 °C. The test results show that the thermal modification can enhance phenol adsorption on AC samples. The porous structure and surface chemistry analyses indicate that the decay in pore morphology and decrease of total oxygen-containing functional groups are found for the thermal modified AC samples. Thus, it can be further inferred that the decrease of total oxygen-containing functional groups on the modified AC samples is the main reason for the enhanced phenol adsorption capacity. For both the raw sample and the optimum modified AC sample at 900 °C, the pseudo-second order kinetics and Langmuir models are found to fit the experimental data very well. The maximum phenol adsorption capacity of the optimum modified AC sample can reach144.93 mg·g-1which is higher than that of the raw sample, i.e. 119.53 mg·g-1. Adsorption thermodynamics analysis confirms that the phenol adsorption on the optimum modified AC sample is an exothermic process and mainly via physical adsorption.  相似文献   

12.
Commercial coconut-based activated carbons (AC), before and after being treated using 65 wt% HNO3 at different temperatures (termed as AC–Hs), were used as adsorbents to remove thiophene (T) or dibenzothiophene (DBT) from model oils. The fresh AC sample and all of the AC–Hs samples were characterized by Boehm titration, Fourier-transform infrared spectroscopy, and thermal analysis, which yield the information of the surface chemistry properties of the carbon materials. The results show that in comparison to the fresh AC sample, the quantity of oxygen-containing functional groups on the surface of AC–Hs samples increases as the pretreatment temperature of the fresh AC sample increases. The adsorption capabilities of the AC samples for removal of T and DBT from model oils were evaluated in a batch-type reactor. It has been found that the refractory DBT can be removed easily over the untreated commercial AC with the removal efficiency even being higher than that of T. In the case of acid modified AC–Hs samples, the efficiency for removal of T has been greatly improved, but this is not the case for the removal of DBT. The possible mechanism for adsorption removal of T and DBT over activated carbons is discussed in terms of the quantity of surface oxygen-containing functional groups of adsorbents and the chemical structure of sulfur compounds. The effect of olefin (1-octene) and aromatic hydrocarbons (benzene) in the model oils on the selective adsorption DBT over AC is also evaluated, revealing that in the case of DBT, the competitive adsorption is involved in the process, and the removal efficiency levels off at a level over 80%.  相似文献   

13.
Y.H Li  B.K Gullett 《Fuel》2003,82(4):451-457
The effect of varying physical and chemical properties of activated carbons on adsorption of elemental mercury (Hg0) was studied by treating two activated carbons to modify their surface functional groups and pore structures. Heat treatment (1200 K) in nitrogen (N2), air oxidation (693 K), and nitric acid (6N HNO3) treatment of two activated carbons (BPL, WPL) were conducted to vary their surface oxygen functional groups. Adsorption experiments of Hg0 by the activated carbons were conducted using a fixed-bed reactor at a temperature of 398 K and under N2 atmosphere. The pore structures of the samples were characterized by N2 and carbon dioxide (CO2) adsorption. Temperature-programmed desorption (TPD) and base-acid titration experiments were conducted to determine the chemical characteristics of the carbon samples. Characterization of the physical and chemical properties of activated carbons in relation to their Hg0 adsorption capacity provides important mechanistic information on Hg0 adsorption. Results suggest that oxygen surface complexes, possibly lactone and carbonyl groups, are the active sites for Hg0 capture. The carbons that have a lower carbon monoxide (CO)/CO2 ratio and a low phenol group concentration tend to have a higher Hg0 adsorption capacity, suggesting that phenol groups may inhibit Hg0 adsorption. The high Hg0 adsorption capacity of a carbon sample is also found to be associated with a low ratio of the phenol/carbonyl groups. A possible Hg0 adsorption mechanism, which is likely to involve an electron transfer process during Hg0 adsorption in which the carbon surfaces may act as an electrode for Hg0 oxidation, is also discussed.  相似文献   

14.
Marjolein L Toebes 《Carbon》2004,42(2):307-315
The effect of liquid-phase oxidation on the texture and surface properties of carbon nanofibers has been studied using XRD, TEM, SEM, N2-physisorption, TGA-MS, XPS and acid-base titrations. Oxidation was performed by refluxing the nanofibers in HNO3 and mixtures of HNO3/H2SO4 for different times. The graphite-like structure of the treated fibers remained intact, however, the specific surface area and the pore volume increased with the severity of oxidation treatment. For the first time it is shown that the most predominant effect that gives rise to these textural modifications is the opening of the inner tubes of the fibers. Moreover, it is demonstrated that both the total oxygen content (O/C=0.02-0.07 at/at) as well as the number of acidic groups (1-3 nm−2) are a function of the type of oxidizing agent used and the treatment time. The total oxygen content of the oxidized samples turns out to be substantially higher than can be accommodated in the form of oxygen-containing groups at the exterior surface.  相似文献   

15.
Several types of carbon materials (activated carbon, carbon black, multiwalled carbon nanotubes) differing in porosity and surface chemistry were used to prepare powdered electrodes. Activated carbon (Norit R3-ex) was demineralized and modified by oxidation with conc. HNO3, heat treatment in NH3 at 900 °C or heat treatment in argon at 1800 °C. Carbon black (Vulcan XC72) was flushed with an organic solvent, while the MWCNTs were functionalized to the hydroxyl and carboxyl forms. Nitrogen adsorption isotherms were used to characterize the pore structure of these materials. Their surface chemistry was assessed using thermogravimetry (TG), elemental analysis, FTIR, EDS and XPS. The ability to adsorb (isotherms) 4-chlorophenol (4-CP) in aqueous solution was determined. Cyclovoltammetric (CV) measurements of powdered carbon electrodes were carried out for blank electrolyte solution (0.1 M Na2SO4) and with different concentrations of 4-CP. Changes in the electric double layer capacity and other electrochemical parameters were estimated from the CV curves. The dependence of the electrochemical behavior of a powdered carbon bed on porosity and surface chemistry is analyzed and discussed. The electrochemical properties were related to chlorophenol adsorption ability and FTIR spectral analysis of the adsorption layer.  相似文献   

16.
Catalytic ozonation of nitrobenzene in aqueous solution has been carried out in a semi-continuous laboratory reactor where ceramic honeycomb and Mn–ceramic honeycomb have been used as the catalysts. The presences of the two catalysts significantly improve the degradation efficiency of nitrobenzene, the utilization efficiency of ozone and the production of oxidative intermediate species compared to the results from non-catalytic ozonation, and the improvement of them is even more pronounced in the presence of Mn–ceramic honeycomb. Adsorptions of nitrobenzene on the two catalytic surfaces have no remarkable influence on the degradation efficiency. Addition of tert-butanol causes the obvious decrease of degradation efficiency, suggesting that degradation of nitrobenzene follows the mechanism of hydroxyl radical (OH) oxidation. Some of the main operating variables like amount of catalyst and reaction temperature exert a positive influence on the degradation efficiency of nitrobenzene. Initial pH also presents a positive effect in the ozonation alone system while the optimum working initial pH is found to be around 8.83 and 10.67 to the processes of ozonation/ceramic honeycomb and ozonation/Mn–ceramic honeycomb, respectively. The surface characteristics measurement of the two catalysts indicates that the loading of Mn increases the specific surface area, the pH at the point of zero charge (pHPZC) and the density of surface hydroxyl groups, and results in the appearance of new crystalline phase of MnO2. The results of mechanism research confirm that the loading of Mn promotes the initiation of OH.  相似文献   

17.
Petroleum coke-derived activated cokes were prepared and used for the adsorptive removal of a single-ring naphthenic acid (NA) from synthetic oil sands process affected water (OSPW). CO2 activation produced carbon with a larger mesopore volume fraction (0.67) than steam activation (0.25). Interestingly, prolonging the activation time of CO2 from 6 to 9 h led to a simultaneous increase in specific surface area (276–405 m2/g) and mesopore volume (0.51–0.67). Furthermore, a positive relationship was found between the pseudo-second-order kinetic rate constant and the mesoporous volume of the activated coke. This suggests both the importance of pore size on kinetics and the fact that physical activation with a reagent such as CO2 may be better suited than chemical activation due to its ability to create mesopores. Although enlarging the pores and accelerating the adsorption rate, post-oxidation had detrimental effects on adsorption capacity, resulting in a decrease in equilibrium adsorbed amount from 115 to 34 mg/g, a 70% decrease, when post-oxidized with O2, due to the negative charge of oxygen-containing functional groups. On the other hand, the measured adsorption capacity increased by over 60% when activated coke was treated with ammonia, a result of the positively charged nitrogen-containing surface groups. Finally, in real OSPW, the activated coke had a much lower capacity for total acid-extractable organics than for the model NA. Therefore, activated petroleum coke may not be the best choice for treating raw tailings pond water and may be better suited for polishing.  相似文献   

18.
A highly mesoporous carbon was synthesized by the conventional sol-gel method involving the polymerization of resorcinol and formaldehyde followed by carbonization. Oxygen activation was employed to modify the surface properties of the polymer based carbon material. The textural properties (surface area, micropore volume) were evaluated from the nitrogen adsorption isotherm at 77 K. The samples were also characterized by XPS, TGA and by elemental analysis. The pHPZC of the oxidized carbon was also determined. The amounts of oxygen surface complexes generated were quantitatively determined using temperature programmed desorption analysis (TPD). The oxidation treatment was found to be quite effective in the generation of oxygen rich surfaces at moderate burn off.  相似文献   

19.
Polystyrene-based activated carbon spheres (PACSK) with high surface area were prepared through KOH activation. Effects of the carbonization temperature and the ratio of KOH to carbon spheres (CS) on the textural structure, hardness and yield of the resultant PACSK were studied, and their adsorption to dibenzothiophene (DBT) were investigated. The as-prepared PACSK exhibited a high surface area (up to 2022 m2/g), large total pore volume (≥ 0.78 cm3/g), superior mechanical hardness and high adsorption capacity (ca. 153 mg/g). With the increase of the KOH/CS ratio from 2:1 to 4:1, the surface area, total pore volume, volume of micropores, and volume of mesopores, increase, whereas the volume of small-micropores (< 0.8 nm) decreases from 0.36 to 0.31 cm3/g. The adsorption capacity has a good linear correlation with the volume of small-micropores rather than the surface area. In addition, the large quantity of acidic oxygen-containing groups of PACSK may also be responsible for their higher adsorption capacity and selectivity of DBT. The PACSK saturated by DBT can be regenerated by a washing process in a shaking bath or using ultrasonic with toluene at 80 °C.  相似文献   

20.
The influences of nitric acid oxidation on the surface properties and the adsorption capacity of single-walled carbon nanotubes (SWCNTs) were investigated in this work. To eliminate the size effects on the adsorption capacity, o-xylene and p-xylene were used as model adsorbates. It was found that purification of the SWCNTs by nitric acid significantly increased the internal surface area as well as the micropore volume of the SWCNTs, and introduced oxygen-containing surface groups. The adsorption capacities of the SWCNTs for o-xylene and p-xylene were mainly influenced by the positions of the methyl groups on the xylene molecules and the presence of oxygen-containing groups on the surface of the SWCNTs. Results also indicated that purification greatly changes the adsorption of o-xylene by the SWCNTs. This could be attributed to the dispersive attractions and the electrostatic repulsions between o-xylene molecules and the surface of the purified SWCNTs, which are introduced by the oxygen-containing surface groups. When compared to the as-grown and the purified SWCNTs, activated carbon had a greater adsorption capacity because of its large specific surface area and the absence of oxygen-containing surface groups. However, when the adsorption capacity was calculated based on surface area, the as-grown SWCNTs had a greater adsorption capacity than did the activated carbons because the micropore size of the activated carbon is mainly smaller than the size of a xylene molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号