首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report on a double-pulse doped, double recess In/sub 0.35/Al/sub 0.65/As-In/sub 0.35/Ga/sub 0.65/As metamorphic high electron mobility transistor (MHEMT) on GaAs substrate. This 0.15-/spl mu/m gate MHEMT exhibits excellent de characteristics, high current density of 750 mA/mm, extrinsic transconductance of 700 mS/mm. The on and off state breakdown are respectively of 5 and 13 V and defined It gate current density of 1 mA/mm. Power measurements at 60 GHz were performed on these devices. Biased between 2 and 5 V, they demonstrated a maximum output power of 390 mW/mm at 3.1 V of drain voltage with 2.8 dB power gain and a power added efficiency (PAE) of 18%. The output power at 1 dB gain compression is still of 300 mW/mm. Moreover, the linear power gain is of 5.2 dB. This is to our knowledge the best output power density of any MHEMT reported at this frequency.  相似文献   

2.
The uniformly doped and the /spl delta/-doped In/sub 0.52/Al/sub 0.48/As/In/sub 0.6/Ga/sub 0.4/As metamorphic high-electron mobility transistors (MHEMTs) were fabricated, and the dc characteristics and the third-order intercept point (IP3) of these devices were measured and compared. Due to more uniform electron distribution in the quantum-well region, the uniformly doped MHEMT exhibits a flatter transconductance (G/sub m/) versus drain-to-source current (I/sub DS/) curve and much better linearity with higher IP3 and higher IP3-to-P/sub dc/ ratio as compared to the /spl delta/-doped MHEMT, even though the /spl delta/-doped device exhibits higher peak transconductance. As a result, the uniformly doped MHEMT is more suitable for communication systems that require high linearity operation.  相似文献   

3.
High-performance 0.1-/spl mu/m In/sub 0.4/AlAs/In/sub 0.35/GaAs metamorphic high-electron mobility transistors (MHEMTs) on GaAs substrate have been successfully fabricated with Ar plasma treatment. Before the gate Schottky metallization, the devices were treated with Ar plasma, which might clean and improve the surface of exposed barrier layer. The devices fabricated with Ar plasma treatment exhibited the excellent characteristics such as 50% reduction of the reverse gate leakage currents, the improved Schottky ideality factor of 1.37, high extrinsic transconductance of 700 mS/mm, and high maximum drain current density of 780 mA/mm. And the cutoff frequency f/sub T/ as high as 210 GHz was achieved. To our knowledge, this is the best reported cutoff frequency for a 0.1-/spl mu/m MHEMT with an indium content of 35% in the channel.  相似文献   

4.
This paper proposes a In/sub 0.5/Al/sub 0.5/As/In/sub x/Ga/sub 1-x/As/In/sub 0.5/Al/sub 0.5/As (x=0.3-0.5-0.3) metamorphic high-electron mobility transistor with tensile-strained channel. The tensile-strained channel structure exhibits significant improvements in dc and RF characteristics, including extrinsic transconductance, current driving capability, thermal stability, unity-gain cutoff frequency, maximum oscillation frequency, output power, power gain, and power added efficiency.  相似文献   

5.
AlGaAs/InGaAs MODFETs having 25% indium in the channel and L/sub G/=0.35 mu m have been fabricated. From DC device characterisation, a maximum saturation current of 670 mA/mm and an extrinsic transconductance of 500 mS/mm have been measured. A maximum unilateral gain cutoff frequency of f/sub c/=205 GHz and a maximum current gain cutoff frequency of f/sub T/=86 GHz have been achieved. Bias dependence of f/sub c/ and f/sub T/ has been measured. At 12 GHz a minimum noise figure of NF=0.8 dB and an associated gain of 11 dB have been measured.<>  相似文献   

6.
A high breakdown voltage and a high turn-on voltage (Al/sub 0.3/Ga/sub 0.7/)/sub 0.5/In/sub 0.5/P/InGaAs quasi-enhancement-mode (E-mode) pseudomorphic HEMT (pHEMTs) with field-plate (FP) process is reported for the first time. Between gate and drain terminal, the transistor has a FP metal of 1 /spl mu/m, which is connected to a source terminal. The fabricated 0.5/spl times/150 /spl mu/m/sup 2/ device can be operated with gate voltage up to 1.6 V owing to its high Schottky turn-on voltage (V/sub ON/=0.85 V), which corresponds to a high drain-to-source current (I/sub ds/) of 420 mA/mm when drain-to-source voltage (V/sub ds/) is 3.5 V. By adopting the FP technology and large barrier height (Al/sub 0.3/Ga/sub 0.7/)/sub 0.5/In/sub 0.5/P layer design, the device achieved a high breakdown voltage of -47 V. The measured maximum transconductance, current gain cutoff frequency and maximum oscillation frequency are 370 mS/mm, 22 GHz , and 85 GHz, respectively. Under 5.2-GHz operation, a 15.2 dBm (220 mW/mm) and a 17.8 dBm (405 mW/mm) saturated output power can be achieved when drain voltage are 3.5 and 20 V. These characteristics demonstrate that the field-plated (Al/sub 0.3/Ga/sub 0.7/)/sub 0.5/In/sub 0.5/P E-mode pHEMTs have great potential for microwave power device applications.  相似文献   

7.
The properties of both lattice-matched and strained doped-channel field-effect transistors (DCFET's) have been investigated in AlGaAs/In/sub x/Ga/sub 1-x/As (0/spl les/x/spl les/0.25) heterostructures with various indium mole fractions. Through electrical characterization of grown layers in conjunction with the dc and microwave device characteristics, we observed that the introduction of a 150-/spl Aring/ thick strained In/sub 0.15/Ga/sub 0.85/As channel can enhance device performance, compared to the lattice-matched one. However, a degradation of device performance was observed for larger indium mole fractions, up to x=0.25, which is associated with strain relaxation in this highly strained channel. DCFET's also preserved a more reliable performance after biased-stress testings.<>  相似文献   

8.
We report an Al/sub 0.3/Ga/sub 0.7/N-Al/sub 0.05/Ga/sub 0.95/N-GaN composite-channel HEMT with enhanced linearity. By engineering the channel region, i.e., inserting a 6-nm-thick AlGaN layer with 5% Al composition in the channel region, a composite-channel HEMT was demonstrated. Transconductance and cutoff frequencies of a 1 /spl times/100 /spl mu/m HEMT are kept near their peak values throughout the low- and high-current operating levels, a desirable feature for linear power amplifiers. The composite-channel HEMT exhibits a peak transconductance of 150 mS/mm, a peak current gain cutoff frequency (f/sub T/) of 12 GHz and a peak power gain cutoff frequency (f/sub max/) of 30 GHz. For devices grown on sapphire substrate, maximum power density of 3.38 W/mm, power-added efficiency of 45% are obtained at 2 GHz. The output third-order intercept point (OIP3) is 33.2 dBm from two-tone measurement at 2 GHz.  相似文献   

9.
The properties of doped-channel field-effect transistors (DCFET) have been thoroughly investigated on Al/sub x/Ga/sub 1-x/As/InGaAs (x= 0.3, 0.5, 0.7, 1) heterostructures with various Al mole fractions. In this study, we observed that by introducing a 200-/spl Aring/-thick Al/sub 0.5/Ga/sub 0.5/As (x=0.5) Schottky layer can enhance the device power performance, as compared with the conventional x=0.3 AlGaAs composition system. However, a degradation of the device power performance was observed for further increasing the Al mole fractions owing to their high sheet resistance and surface states. Therefore, Al/sub 0.5/Ga/sub 0.5/As Schottky layer design provides a good opportunity to develop a high power device for power amplifier applications.  相似文献   

10.
DC and RF characteristics of 0.15 °m GaAs power metamorphic high electron mobility transistors (MHEMT) have been investigated. The 0.15 °m ° 100 °m MHEMT device shows a drain saturation current of 480 mA/mm, an extrinsic transconductance of 830 mS/mm, and a threshold voltage of ‐0.65 V. Uniformities of the threshold voltage and the maximum extrinsic transconductance across a 4‐inch wafer were 8.3% and 5.1%, respectively. The obtained cut‐off frequency and maximum frequency of oscillation are 141 GHz and 243 GHz, respectively. The 8 ° 50 °m MHEMT device shows 33.2% power‐added efficiency, an 18.1 dB power gain, and a 28.2 mW output power. A very low minimum noise figure of 0.79 dB and an associated gain of 10.56 dB at 26 GHz are obtained for the power MHEMT with an indium content of 53% in the InGaAs channel. This excellent noise characteristic is attributed to the drastic reduction of gate resistance by the T‐shaped gate with a wide head and improved device performance. This power MHEMT technology can be used toward 77 GHz band applications.  相似文献   

11.
The DC and RF characteristics of Ga/sub 0.49/In/sub 0.51/P-In/sub 0.15/Ga/sub 0.85/As enhancement- mode pseudomorphic HEMTs (pHEMTs) are reported for the first time. The transistor has a gate length of 0.8 /spl mu/m and a gate width of 200 /spl mu/m. It is found that the device can be operated with gate voltage up to 1.6 V, which corresponds to a high drain-source current (I/sub DS/) of 340 mA/mm when the drain-source voltage (V/sub DS/) is 4.0 V. The measured maximum transconductance, current gain cut-off frequency, and maximum oscillation frequency are 255.2 mS/mm, 20.6 GHz, and 40 GHz, respectively. When this device is operated at 1.9 GHz under class-AB bias condition, a 14.7-dBm (148.6 mW/mm) saturated power with a power-added efficiency of 50% is achieved when the drain voltage is 3.5 V. The measured F/sub min/ is 0.74 dB under I/sub DS/=15 mA and V/sub DS/=2 V.  相似文献   

12.
In this letter, we propose and demonstrate a novel device based on a floating reduced surface field (FRESURF) concept which allows the realization of significantly higher breakdown voltage in a thin epitaxy-based power IC technology. The newly proposed device with the floating buried layer pulled back from the source side is able to realize an enhanced breakdown voltage (BV/sub dss/) without degrading the specific on-resistance (R/sub dson/A). BV/sub dss/-R/sub dson/A values like 47 V-0.28 m/spl Omega//spl middot/cm/sup 2/ or 93 V-0.82 m/spl Omega//spl middot/cm/sup 2/ have been realized with a conventional power IC technology without any added process complexity.  相似文献   

13.
A 0.1-/spl mu/m T-gate fabricated using e-beam lithography and thermally reflow process was developed and applied to the manufacture of the low-noise metamorphic high electron-mobility transistors (MHEMTs). The T-gate developed using the thermally reflowed e-beam resist technique had a gate length of 0.1 /spl mu/m and compatible with the MHEMT fabrication process. The MHEMT manufactured demonstrates a cutoff frequency f/sub T/ of 154 GHz and a maximum frequency f/sub max/ of 300 GHz. The noise figure for the 160 /spl mu/m gate-width device is less than 1 dB and the associated gain is up to 14 dB at 18 GHz. This is the first report of a 0.1 /spl mu/m MHEMT device manufactured using the reflowed e-beam resist process for T-gate formation.  相似文献   

14.
We report, to our knowledge, the best high-temperature characteristics and thermal stability of a novel /spl delta/-doped In/sub 0.425/Al/sub 0.575/As--In/sub 0.65/Ga/sub 0.35/As--GaAs metamorphic high-electron mobility transistor. High-temperature device characteristics, including extrinsic transconductance (g/sub m/), drain saturation current density (I/sub DSS/), on/off-state breakdown voltages (BV/sub on//BV/sub GD/), turn-on voltage (V/sub on/), and the gate-voltage swing have been extensively investigated for the gate dimensions of 0.65/spl times/200 /spl mu/m/sup 2/. The cutoff frequency (f/sub T/) and maximum oscillation frequency (f/sub max/), at 300 K, are 55.4 and 77.5 GHz at V/sub DS/=2 V, respectively. Moreover, the distinguished positive thermal threshold coefficient (/spl part/V/sub th///spl part/T) is superiorly as low as to 0.45 mV/K.  相似文献   

15.
InP-In/sub 0.53/Ga/sub 0.47/As-InP double heterojunction bipolar transistors (DHBT) have been designed for use in high bandwidth digital and analog circuits, and fabricated using a conventional mesa structure. These devices exhibit a maximum 391-GHz f/sub /spl tau// and 505-GHz f/sub max/, which is the highest f/sub /spl tau// reported for an InP DHBT-as well as the highest simultaneous f/sub /spl tau// and f/sub max/ for any mesa HBT. The devices have been aggressively scaled laterally for reduced base-collector capacitance C/sub cb/. In addition, the base sheet resistance /spl rho//sub s/ along with the base and emitter contact resistivities /spl rho//sub c/ have been lowered. The dc current gain /spl beta/ is /spl ap/36 and V/sub BR,CEO/=5.1 V. The devices reported here employ a 30-nm highly doped InGaAs base, and a 150-nm collector containing an InGaAs-InAlAs superlattice grade at the base-collector junction. From this device design we also report a 142-GHz static frequency divider (a digital figure of merit for a device technology) fabricated on the same wafer. The divider operation is fully static, operating from f/sub clk/=3 to 142.0 GHz while dissipating /spl ap/800 mW of power in the circuit core. The circuit employs single-buffered emitter coupled logic (ECL) and inductive peaking. A microstrip wiring environment is employed for high interconnect density, and to minimize loss and impedance mismatch at frequencies >100 GHz.  相似文献   

16.
The decrease of transconductance g/sub m/ and current gain cutoff frequency f/sub T/ at high drain current levels in AlGaN/GaN high-electron mobility transistors (HEMTs) severely limits the linearity and power performance of these devices at high frequencies. In this paper, the increase of the differential source access resistance r/sub s/, with drain current is shown to play an important role in the fall of g/sub m/ and f/sub T/. The increase of r/sub s/ occurs due to the quasi-saturation of the electron velocity in the source region of the channel at electric fields higher than 10 kV/cm. This has been confirmed by both experimental measurements and two-dimensional drift-diffusion simulations. Through simulations, we have identified HEMT structures with source implanted regions (or n/sup ++/ cap layers) as good candidates in order to increase the linearity of the g/sub m/ and f/sub T/ versus current profile.  相似文献   

17.
The authors have experimentally studied the optical control and optical tuning characteristics of monolithically integrated In/sub 0.53/Ga/sub 0.47/As/In/sub 0.52/Al/sub 0.48/As modulation-doped field-effect transistor (MODFET) oscillators operating in the X and R bands. For a 20 mu W intrinsic photoexcitation on the device, the maximum frequency shift for the X- and R-band oscillators was 8.7 and 11.7 MHz, respectively.<>  相似文献   

18.
We have demonstrated the fabrication of dynamic threshold voltage MOSFET (DTMOS) using the Si/sub 1-y/C/sub y/(y=0.005) incorporation interlayer channel. Compare to conventional Si-DTMOS, the introduction of the Si/sub 1-y/C/sub y/ interlayer for this device is realized by super-steep-retrograde (SSR) channel profiles due to the retardation of boron diffusion. A low surface channel impurity with heavily doped substrate can be achieved simultaneously. This novel Si/sub 1-y/C/sub y/ channel heterostructure MOSFET exhibits higher transconductance and turn on current.  相似文献   

19.
In/sub 0.5/Al/sub 0.5/As--In/sub 0.5/Ga/sub 0.5/As metamorphic high-electron mobility transistor (mHEMT) dc-30 GHz distributed single-pole-single through (SPST) switches were designed and fabricated using the low-/spl kappa/ benzocyclobutene (BCB) bridged technology. The current gain cutoff frequency, and the electron transit time of In/sub 0.5/Al/sub 0.5/As--In/sub 0.5/Ga/sub 0.5/As mHEMTs have been investigated. By analyzing the extrinsic total delay time, the effective velocity of electrons can be estimated, and the average velocity is 2.3/spl times/10/sup 7/cm/s. The dc-30 GHz distributed wideband SPST switch exhibits an insertion loss of less than 5.5 dB, and an isolation larger than 30 dB, which is the first demonstration of the high-isolation of InAlAs-InGaAs mHEMTs monolithic switch. As to the power performance, this switch can handle the power up to 12 dBm at 2.4 GHz. After over 250 h of 85-85 (temperature =85/spl deg/C, humidity =85%) environmental evaluation, this BCB passivated and bridged microwave and monolithic integrated circuit switch demonstrates reliable RF characteristics without any significant performance change, which proves that this process using the low-/spl kappa/ BCB layer is attractive for millimeter-wave circuit applications.  相似文献   

20.
We fabricated 30-nm gate pseudomorphic channel In/sub 0.7/Ga/sub 0.3/As-In/sub 0.52/Al/sub 0.48/As high electron mobility transistors (HEMTs) with reduced source and drain parasitic resistances. A multilayer cap structure consisting of Si highly doped n/sup +/-InGaAs and n/sup +/-InP layers was used to reduce these resistances while enabling reproducible 30-nm gate process. The HEMTs also had a laterally scaled gate-recess that effectively enhanced electron velocity, and an adequately long gate-channel distance of 12nm to suppress gate leakage current. The transconductance (g/sub m/) reached 1.5 S/mm, and the off-state breakdown voltage (BV/sub gd/) defined at a gate current of -1 mA/mm was -3.0 V. An extremely high current gain cutoff frequency (f/sub t/) of 547 GHz and a simultaneous maximum oscillation frequency (f/sub max/) of 400 GHz were achieved: the best performance yet reported for any transistor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号