首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The polycrystalline Bi1.8Pb0.4Sr2.0Ca1.1Cu2.1 MxO y , with M = Zr (x = 0.0, 0.02, 0.04), were synthesized by solid-state reaction method and studied by X-ray diffraction analysis (XRD), scanning electron microscopy equipped with energy dispersive of X-ray analysis (SEM/EDX) and resistivity versus temperature measurements. The influence of the Zr addition on the Tc and microstructure properties of the superconducting compounds has been studied. SEM observations show whiskers grains randomly distributed and microstructural change due to the addition of Zr. The ZrO2 was incorporated into the crystalline structure of BSCCO system in all samples. The crystallographic structure remains in a tetragonal form where a= bc. Generally, all samples exhibit semiconductor behaviour above \(T_{\mathrm {c}}^{\text {onset}}\). The onset critical temperature \(T_{\mathrm {c}}^{\text {onset}}\) increases up to 86 with x = 0.02. There is an enhancement in the critical temperature for doped samples as compared with pure Bi1.8Pb0.4Sr2.0Ca1.1Cu2.1O y .Changes in superconducting properties of ZrO2 nanoparticle added Bi-2212 system were discussed.  相似文献   

2.
We have studied the formation of zinc niobate, ZnNb2O6, with the columbite structure and the microstructure and microwave dielectric properties of Zn1+x Nb2O6+x ceramics. The results demonstrate that, in the range 0.005 ≤ x ≤ 0.03, the excess zinc reduces the porosity of the material and increases its microwave quality factor Q. For x ≥ 0.03, the Q of the ceramics decreases because of the formation of an additional, zinc-enriched phase. Sintering in an oxygen atmosphere is shown to improve the dielectric properties of stoichiometric ZnNb2O6.  相似文献   

3.
Perovskite type (Ba0.85Ca0.15?2x Bi2x )(Zr0.1Ti0.9?x Cu x )O3 lead-free ceramics were prepared via a conventional solid-state reaction method. The phase structure, dielectric, ferroelectric properties and complex impedance were investigated in detail. XRD and dielectric measurements determined that single orthorhombic phase displayed in (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 at room temperature. With the introduction of Bi2O3/CuO, the phase structure exhibited the mixture of orthorhombic and tetragonal phases, and then turned to single tetragonal phase. In contrast to the sharp dielectric transition of (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 ceramics, a broad dielectric peak coupled with a slight decrease in Curie temperature was observed in (Ba0.85Ca0.15?2x Bi2x )(Zr0.1Ti0.9?x Cu x )O3 ceramics with increasing x. The observed diffuse phase transition behavior was further confirmed by a couple of measurements with polarization loops and polarization current density curves. The structural and the composition fluctuations induced by ions doping should be responsible for the diffuse phase transition behavior. Furthermore, physical mechanisms of the conduction and relaxation processes were revealed by using impedance spectroscopy analyses. It was concluded that the conduction and relaxation processes were thermally activated, which was closely linked with the singly and doubly ionized oxygen vacancies.  相似文献   

4.
Nickel ferrite (NiFe2O4) nanoparticles and Cu0.5Tl0.5Ba2Ca2Cu3O10?δ (CuTl-1223) superconductor were prepared separately and then mixed in an appropriate ratios at the final stage to obtain (NiFe2O4) x /CuTl-1223 (x = 0, 0.5, and 1.0 wt%) nano-superconductor composites. There was no significant change observed in crystal structure of the host CuTl-1223 superconducting matrix after the addition of NiFe2O4 nanoparticles. The value of zero-resistivity critical temperature { T c(R = 0) (K)} was decreased with increasing content of these nanoparticles in these composites. Maximum values of dielectric loss tangent (tanδ) at lowest possible frequency of 40 Hz were increased with the increase of operating temperature, while its values were decreased and become almost zero at higher frequencies for all these samples at all operating temperatures. A peak in dielectric loss tangent was shifted towards lower frequency values with the addition of these nanoparticles in CuTl-1223 superconducting matrix. The dielectric loss tangent peak was also shifted towards lower frequency values in all these samples with increasing operating temperature, which shows the relaxator-like behavior in these samples. The dielectric parameters of these composites can be tuned by frequency, operating temperatures, and nature and content of these nanoparticles.  相似文献   

5.
We have studied the influence of YBa2Cu3O6 + x clusters formed in the plasma generated by laser ablation of a YBa2Cu3O7 ? δ target on the optical transmission spectra of amorphous YBaCuO films deposited on glass substrates arranged along the direction of predominant plasma expansion in the laser plume. It is established that intense cluster formation begins in the region of rapid decrease in the film thickness, where the temperature of plasma decreases to a level at which stable atomic complexes characteristic of the target composition can form (under the experimental conditions studied, this was observed at as distance of L > 6 cm from the target). As the amount of clusters in the deposit increases, the magnitude of the interference fringes, which are characteristic of optically homogeneous media, gradually decreases and eventually almost vanishes. At the same time, features typical of the electron structure of YBa2Cu3O7 ? δ appear and grow in the optical transmission spectra of the YBaCuO films, including the absorption due to free charge carriers at ?ω < 1.2 eV (characteristic of “metallic” clusters) and the minima at ?ω = 1.4 and 1.75 eV (characteristic of a dielectric state).  相似文献   

6.
Manganese ferrite (MnFe2O4) nanoparticles and Cu0.5Tl0.5Ba2Ca2Cu3O10?δ(CuTl-1223) superconducting phase were synthesized by sol-gel and solid-state reaction methods, respectively. Different contents of MnFe2O4 nanoparticles were added in CuTl-1223 superconducting matrix to get (MnFe2O4)x/CuTl-1223; x =? 0~2.0 wt% nanoparticles-superconductor composites. Complex electric modulus spectroscopy measurements of (MnFe2O4)x/CuTl-1223 composites were carried out at different test frequencies from 20 Hz to 10 MHz and at different operating temperatures from 78 to 253 K to analyze and interpret the dynamical aspects of electrical transport phenomena (i.e., such as carrier hopping rate, conductivity, and blocking factor). The complex electric modulus spectra showed the effects of both grains and grain-boundaries on electrical properties. The capacitance of grain-boundaries was found higher than that of grains. The capacitive behavior of grains was increased and that of grain-boundaries was decreased with increasing operating temperature for all these samples. Blocking factor of these composites was increased with increasing contents of MnFe2O4 nanoparticles. Shifting of peaks in imaginary part of modulus spectra towards lower frequency with increasing contents of these nanoparticles showed non-Debye type relaxation phenomenon in the material.  相似文献   

7.
The p-T phase diagram of the Cu–Te system is constructed using the T-x phase diagram reported earlier, the vapor compositions over the copper tellurides Cu2Te, Cu3 ? x Te2, and CuTe, and their dissociation pressures.  相似文献   

8.
The structure, electrical properties, and noise characteristics of the epitaxial YBa2Cu3O7?x high-T c superconductor films grown by laser ablation and magnetron sputtering on CeO2/Al2O3 and LaAlO3 substrates have been studied. Experimental values of the film parameters (effective noise voltage V n, bolometer resistance R b, working temperature T b, etc.) were used to calculate the main characteristics of bolometers based on such films, intended for the absolute radiometry of synchrotron radiation in the 150–3000 eV range. Numerical estimates of the equivalent noise power, NEP Σ = 8 × 10?11?1.3 × 10?10 W/Hz0.5, show that the proposed films can be used for the creation of a high-precision absolute radiometer capable of detecting soft x-ray (synchrotron) radiation in a broad frequency range with a power of about 1 μW at an error not exceeding 1%.  相似文献   

9.
A topological mechanism of hole localization as two skyrmions in the CuO2 layers of high-T c superconductors is suggested on the basis of a nonlinear σ model.  相似文献   

10.
Polycrystalline ceramics Nd0.7Sr0.3MnO y prepared by solid-state reaction were treated under high pressure of 9 GPa and temperature of 1000 K. The electrical transport behaviour of samples were investigated by a variable temperature system and a peculiar transport character was found at low temperature of 120 K, the I–V showed an obvious step-shape behaviour with the increase in the measurement voltages; at much lower temperature of 12.3 K, the I–V curves exhibited a notable symmetric hysteresis at a critical voltage of 4.5 V, although a linear I–V behaviour at 293 K. On the other hand, the R–T measurement revealed that the resistivity peak (resistivity at T M I ) disappeared gradually and is replaced by a resistivity platform with the increase in the load currents, surprisingly, the resistivity platform broadened with continuous increase in the load currents but weakened when an external magnetic field was applied. All of these phenomena were not observed for the un-treated sample. The particle attenuated and the enhanced interface effect which resulted from the violent thermal-pressure treatment was responsible for the unique electromagnetic transport.  相似文献   

11.
The present paper focuses on methods of further improving the flux pinning and critical current density of disk-shaped MgB2 bulk superconductors by adding excess Mg metal in combination with an optimum silver content and optimized processing conditions. Bulk MgB2 samples were produced by in situ solid-state reaction in Ar gas ambient using high purity commercial powders of Mg metal and 1.5 wt% carbon-coated amorphous B powders mixed in a fixed ratio of Mg/B = 1.1:2. Further, 4 wt% silver was added to improve flux pinning as well as mechanical performance of the bulk MgB2 material. The magnetization measurements confirmed a sharp superconducting transition with Tc,onset at around 37 K, which is only by 1 K lower than in bulk MgB2 material produced without carbon-coated amorphous boron. The critical current density (Jc) values significantly improved in the MgB2 material with 4 wt% of silver and 1.5 wt% of carbon-coated amorphous boron, sintered at 775 °C for 3 h. At 20 K, this sample showed Jc at around 500 and 350 kA/cm2 in the self-field and 1 T, respectively, which makes it suitable for several industrial applications.  相似文献   

12.
Bi2Sr2CaCu2O8+x (Bi-2212) round wires have outstanding electromagnetic behaviors in a high magnetic field. However, the filaments’ fracture or gas bubble is difficult to avoid during the fabrication and application of Bi-2212 round wire, which would affect the critical current density seriously. In this paper, the engineering current density is studied based on Kim model for 7-bundle and 18-bundle wires with filament fracture by considering the effect of bridges between filaments. The distributions of critical current density of filaments are also investigated for different external fields. Finally, we present the relation between the number of cracked filaments and the applied strain.  相似文献   

13.
Thermodynamic modeling of the chemical vapor deposition of boron-carbonitride-based films in the B-C-N-H-O system using mixtures of N-trimethylborazine and nitrogen is carried out for reduced pressures (13.3 and 1.33 Pa) and a wide temperature range (300–1300 K). The source of oxygen impurities in this system is a residual pressure of 0.40 Pa. The results indicate that films of various compositions can be grown. The conditions for the deposition of BC x N y films are identified.  相似文献   

14.
Bi2–хLaхFe4O9 and Bi2Fe4–2xTixCoxO9 ferrites have been prepared by solid-state reactions at a temperature of 1073 K. X-ray diffraction data indicate that, in the Bi2–хLaхFe4O9 system, the limiting degree of La3+ substitution for Bi3+ ions in Bi2Fe4O9 does not exceed 0.05 and that the limiting degree of substitution in the Bi2Fe4–2xTixCoxO9 system lies in the range 0.05 < x < 0.1. The specific magnetization and specific magnetic susceptibility of the samples have been measured at temperatures from 5 to 300 K in a magnetic field of 0.86 T. The field dependences of magnetization obtained for the Bi2–хLaхFe4O9 and Bi2Fe4–2xTixCoxO9 ferrites at temperatures of 300 and 5 K demonstrate that partial isovalent substitution of La3+ for Bi3+ ions in Bi2Fe4O9 and heterovalent substitution of Ti4+ and Co2+ ions for two Fe3+ ions leads to partial breakdown of the antiferromagnetic state and nucleation of a ferromagnetic state.  相似文献   

15.
New solid solutions, Bi2?x?y Tm x Nb y O3+δ, with tetragonal and cubic structures have been synthesized in the Bi2O3-Tm2O3-Nb2O5 system, and their electrical conductivity has been measured at temperatures from 670 to 1020 K. The 1020-K conductivity of the tetragonal solid solution Bi1.8Tm0.15Nb0.05O3+δ is comparable to that of Bi1.75Tm0.25O3, the best conductor in the Bi2O3-Tm2O3 system.  相似文献   

16.
In this paper, we present the theoretical investigation and study of reflectance properties in a 1D ternary annular photonic crystal (TAPC) containing a semiconductor and a high-temperature superconductor. The proposed structure consists of alternate layers of indium nitride (InN), Bi2Sr2CaCu3O8 (BSCCO), and air placed in free space. A reflectance spectrum of the TAPC is obtained by employing the transfer matrix method (TMM) in the cylindrical waves for both transverse electric (TE) and transverse magnetic (TM) polarized waves. From the study of reflectance spectra, it is observed that the reflection band of the annular photonic crystal depends on the azimuthal mode number m in addition to other parameters. It is found that for azimuthal mode number m = 0, the width of the reflection band of the annular photonic crystal is the same as that of a planar photonic crystal (PPC). When the azimuthal mode number increases, the width of the reflection band increases at higher m values (m >5) for TE waves. In the case of the TM wave, it is interesting to observe that a superpolariton gap is created for a higher value of the azimuthal number (m >0). Further, we see the effect of the starting radius (ρ 0) on the reflection band of the TAPC structure at the given m number for both TE- and TM-polarized waves. Finally, the effect of temperature on the reflectance spectra for both TE and TM waves at the given ρ 0 and azimuthal mode has been studied.  相似文献   

17.
The pressure-induced intrinsic effects in the CuO2 plane within the van Hove singularity (VHS) scenario is combined with the modified two-dimensional (2D) lattice gas phenomenology for the basal plane to model the complex structure of the hole-doping dependence of the pressure derivatives of T c of YBa2Cu3O6+x. The experimentally observed structure is found to be reproduced reasonably satisfactorily in the present formalism. This shows that the pressure-induced changes in the CuO2 plane and the oxygen ordering in the basal plane both play important roles in explaining the doping dependent pressure derivative of T c .  相似文献   

18.
Multiferroic properties of La-modified four-layered perovskite Bi5?x La x Fe0.5Co0.5Ti3O15 (0 ≤ x ≤ 1) ceramics were investigated, by analyzing the magnetodielectric effect, magneto-polarization response and magnetoelectric conversion. X-ray diffraction indicated the formation of pure Aurivillius ceramics, and Raman spectroscopy revealed the Bi ions displacement and the crystal structure variation. The enhancement of ferromagnetic and ferroelectric properties was observed in Bi5?x La x Fe0.5Co0.5Ti3O15 after La modification. The evidence for enhanced ME coupling was determined by magnetic field-induced marked variations in the dielectric constant and polarization. A maximum ME coefficient of 1.15 mV/cm·Oe was achieved in Bi4.25La0.75Fe0.5Co0.5Ti3O15 ceramic, which provides the possible promise for novel magnetoelectric device application.  相似文献   

19.
Development of low-cost, highly efficient catalysts for water splitting is required to replace precious metal catalysts. CeO x -modified CoP@carbon composites are prepared via Ce-doped metal–organic frameworks. The as-prepared CeO x -modified CoP@carbon composites have excellent electrocatalytic activity with respect to the oxygen evolution reaction, for which an overpotential (η) up to?~?313 mV is achieved at the current density of 10 mA cm?2. In addition, CeO x -modified CoP@carbon composites show an overpotential of up to 127 mV at the current density of 10 mA cm?2 for the hydrogen evolution reaction, showing excellent catalytic activity for water splitting.  相似文献   

20.
Platelike Li1 ? x Na x Cu2O2 single crystals up to 2 × 10 × 10 mm in dimensions have been grown by slowly cooling (1 ? x)Li2CO3·xNa2O2·4CuO melts in alundum crucibles in air. Li1 ? x Na x Cu2O2 solid solutions in the LiCu2O2-NaCu2O2 system have been shown to exist in the composition range 0.78 < x < 1. The temperature stability ranges of NaCu2O2 and LiCu2O2 are 780–930 and 890–1050°C, respectively. The Mössbauer spectra and electrical conductivity of the crystals have been measured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号