首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, a reflection-mode near-field optical microscope with an apertureless tungsten tip has been introduced and 100-nm resolution has been achieved [R. Bachelot, P. Gleyzes, and A. C. Boccara, Microsc. Microanal. Microstruc. 5, 389-397 (1994)]. The optical signal is recorded in parallel with a tapping-mode atomic force microscope signal. By showing several images here, we confirm the capabilities of this device and clearly demonstrate a 20-nm (~lambda/35) resolution that has been achieved with smaller tips. A study of these images shows that both the topography and the near electromagnetic field of the sample can be independently probed by this device. Additionally, we discuss the principle of our approach, notably on the basis of interference phenomena between a Rayleigh scatterer and its image through the reflecting surface, and some of the setup's experimental characteristics are presented.  相似文献   

2.
Ma H  Levy J 《Nano letters》2006,6(3):341-344
Nanoscale domain dynamics of (Ba,Sr)TiO(3) thin films are investigated at microwave frequencies with a home-developed GHz-frequency apertureless near-field scanning optical microscope (GHz-ANSOM). Using a microwave phase-modulation technique, we decoupled topographic artifacts from the optical signal, providing an enhanced and background-free temporal response. Interleaved acquisition of images taken at sequential time intervals provides amplitude and phase information about the electrooptic response at <50 nm spatial resolution and <10 ps temporal resolution. The local microwave response is highly nonuniform in both the amplitude and the phase.  相似文献   

3.
We theoretically and experimentally illustrate a new apertured near-field scanning optical microscopy (NSOM) technique, termed differential NSOM (DNSOM). It involves scanning a relatively large (e.g., 0.3-2 mum wide) rectangular aperture (or a detector) in the near-field of an object and recording detected power as a function of the scanning position. The image reconstruction is achieved by taking a two-dimensional derivative of the recorded power map. Unlike conventional apertured NSOM, the size of the rectangular aperture/detector does not determine the resolution in DNSOM; instead, the resolution is practically determined by the sharpness of the corners of the rectangular aperture/detector. Principles of DNSOM can also be extended to other aperture/detector geometries such as triangles and parallelograms.  相似文献   

4.
Wei PK  Hsu JH  Fann WS  Tsai KT 《Applied optics》1996,35(34):6727-6731
The simultaneous operation of near-field scanning optical microscopy (NSOM) in reflection and transmission modes is demonstrated. In the transmission mode, a low-noise, large-area silicon photodetector was mounted between the piezoelectric transducer scanning stage and the sample. In the reflection mode, either a photomultiplier tube or two large-area silicon detectors was used for signal collection. The reflection-mode setup consisting of two silicon detectors provides a large numerical aperture of 0.9 as well as symmetrical detection of emitting photons. The dielectric thin films and the light-emitting polymers were used to demonstrate the capability of these two modes of NSOM. A comparison between these two different setups is also presented.  相似文献   

5.
A backscattering type ultraviolet apertureless near-field scanning optical microscope (ANSOM) for the correlated measurement of topographical and optical characteristics of photonic materials with high optical resolution was developed. The near-field Rayleigh scattering image of GaN covered with periodic submicron Cr dots showed that optical resolution around 40 nm was achievable. By measuring the tip scattered photoluminescence of InGaN/GaN multi quantum wells, the applicability of the developed microscope for high resolution fluorescence measurement was also demonstrated.  相似文献   

6.
Localized surface plasmon polaritons (SSPs) have been observed on very small aperture lasers using apertureless near-field microscopy. Fields around multiple apertures are shown to result from interferences of SPP point sources at each aperture and optical fields. The near-field optical pattern around a single aperture indicates the interference of SPPs with their scattered counterparts. Near-field measurements also confirmed a preferred orientation of the rectangular aperture waveguide for the signal localization in very small aperture lasers.  相似文献   

7.
Cline JA  Isaacson M 《Applied optics》1995,34(22):4869-4876
Reflection near-field scanning optical microscopy with an asymmetric detector orientation is demonstrated. The effects of the probe-sample interactions are studied for different polarizations, detector orientations, and sample reflectivity. It is shown that the orientation of the detector can introduce shadowing in the images, which is opposite from the naive interpretation and which is dependent on the optical properties of the sample. Near-field optical images of metallic test patterns in reflection are shown that exhibit a lateral resolution of 40 nm.  相似文献   

8.
Near-field scanning optical microscopy (NSOM) is a high-resolution scanning probe technique capable of obtaining simultaneous optical and topographic images with spatial resolution of tens of nanometers. We have integrated time-correlated single-photon counting and NSOM to obtain images of fluorescence lifetimes with high spatial resolution. The technique can be used to measure either full fluorescence lifetime decays at individual spots with a spatial resolution of <100 nm or NSOM fluorescence images using fluorescence lifetime as a contrast mechanism. For imaging, a pulsed Ti:sapphire laser was used for sample excitation and fluorescent photons were time correlated and sorted into two time delay bins. The intensity in these bins can be used to estimate the fluorescence lifetime at each pixel in the image. The technique is demonstrated on thin films of poly(9,9'-dioctylfluorene) (PDOF). The fluorescence of PDOF is the results of both inter- and intrapolymer emitting species that can be easily distinguished in the time domain. Fluorescence lifetime imaging with near-field scanning optical microscopy demonstrates how photochemical degradation of the polymer leads to a quenching of short-delay intrachain emission and an increase in the long-delay photons associated with interpolymer emitting species. The images also show how intra- and interpolymer species are uniformly distributed in the films.  相似文献   

9.
The method of fluorescence resonance energy transfer scanning near-field optical microscopy (FRET SNOM) consists in the separation of a FRET pair between an SNOM tip and a sample. The donor (or acceptor) centre is located at the tip apex and scanned in the vicinity of a sample while acceptor fluorescence (or donor-fluorescence quenching) is detected. It is shown that the spatial resolution for such an approach is governed not by the aperture size but by the FRET characteristic radius (F?rster radius), and thus can attain the value of 2-7 nm with the same (or higher) sensitivity as characteristic for the aperture SNOM. The theoretical fundamentals of the method, its experimental realization and connections with other types of near-field optical microscopy are discussed. Coherent FRET SNOM, which can be realized at liquid helium temperatures, and its possible applications for quantum informatics, are briefly outlined.  相似文献   

10.
Wei PK  Hsu JH  Fann W  Chuang KR  Lee HT  Chen SA 《Applied optics》1997,36(15):3301-3304
We report the studies of conjugated polymers, polyaniline thin films, with a near-field scanning optical microscope. Because of the absorption variation in different oxidation states, transmission-mode near-field scanning optical microscope images were employed to map out the distribution of the oxidation states on a submicrometer scale. When the near-field wavelength is varied (between 632.8 and 543.5 nm), the phase separation between the oxidized and the reduced repeated units, with domain sizes on a nanometer-length scale, is observed.  相似文献   

11.
The mechanism of tuning fork-based shear-force near-field scanning optical microscopy is investigated to determine optimal experimental conditions for imaging soft samples immersed in liquid. High feedback sensitivity and stability are obtained when only the fiber probe, i.e., excluding the tuning fork prongs, is immersed in solution, which also avoids electrical shorting in conductive (i.e., buffer) solutions. Images of MEH-PPV were obtained with comparable spatial resolution in both air and water. High optical resolution (approximately160 nm fwhm) was observed.  相似文献   

12.
The probe-to-sample separation in near-field scanning optical microscopes can be regulated by a noncontact shear-force sensing technique. The technique requires the measurement of a minute dither motion applied to the probe. We have characterized an optical detection method for measuring this motion to determine the optimum detection configuration in terms of sensitivity and stability. A scalar diffraction model of the detection method is developed for calculating sensitivity, and experimental results are found to be in good agreement with the theoretical predictions. We find that maximum sensitivity and stability cannot be achieved simultaneously, and it may be desirable in practice to trade sensitivity for enhanced stability.  相似文献   

13.
We present a method for obtaining a position-dependent absorption coefficient from near-field scanning optical transmission microscopy. We show that the optical transmission intensity can be combined with the topography, resulting into an absorption coefficient that simplifies the analysis of different materials within a sample. The method is tested with the dye rhodamine 6G, and we show some analysis in biological samples such as bacteria KIebsiella pneumoniae and Pseudomonas aeruginosa. The calculated absorption coefficient images show important details of the bacteria, in particular for P. aeruginosa, in which membrane vesicles are clearly seen.  相似文献   

14.
Abstract

This paper describes finite-element techniques to simulate scattering of electromagnetic radiation from objects in inhomogeneous solution spaces. The motivation for the work is the development of software to model field interactions at surfaces for scanning near-field optical microscopes. The calculation is performed in a computational anechoic chamber—a finite volume surrounded by an absorbing layer to simulate free space. The volume may consist of any configuration of materials, including lossy dielectrics and ferrites. The first step in the procedure is to find a distribution of element current sources consistent with the absorbing boundaries that generate the desired unperturbed wave solution. The base solution is not limited to simple plane waves. It may consist of any valid electromagnetic disturbance including mixed propagating and evanescent waves. The second step is to introduce one or more scattering objects and to solve finite-element equations for the perturbed fields. One advantage of the approach is that the boundaries need only absorb the scattered field components. Another useful feature for the microscopy calculations is that the method is equally effective for near and far fields. In simulations of small object scattering the absorbing boundary can be at a distance much less than a wavelength.  相似文献   

15.
Silicon-based antiresonant reflecting optical waveguide (ARROW) devices were studied by means of a scanning near-field optical microscope. Various structures such as a Y junction of a Mach-Zehnder interferometer and a directional optical coupler were characterized, showing the propagation of the light inside the devices simultaneously with the topography. Scattering on the splitting point of the Y junction was shown, as well as a partial coupling of the light between the two branches of the coupler. Measurements on the decay length of the evanescent field were also performed to study the use of the ARROW waveguide for sensor purposes.  相似文献   

16.
反射式近场光学显微镜样品近场光分布特性   总被引:1,自引:0,他引:1  
建立了一种反射式近场光学显微镜中样品近场光分布特性的模型,应用矢量衍射理论,得到了系统的场方程。在弱波动条件下,采用微扰法对场方程进行了求解,能方便地得到样品表面的各阶近场光反射和透射模复振幅表达式。计算结果表明,一级场分布要比零级场小一个量级,各阶近场信号的强弱完全由面形函数的傅里叶变换决定。通过与零级结果的比较,证明了计算结果的正确性。提供了一种计算样品表面近场分布简便方法,对反射式近场光学显微镜中调制检测技术具有指导意义。  相似文献   

17.
We describe a nanoscale strategy for detecting biotin-streptavidin binding using near-field scanning optical microscopy (NSOM) that exploits the fluorescence properties of single polydiacetylene (PDA) liposomes. NSOM is more useful to observe nanomaterials having optical properties with the help of topological information. We synthesized amine-terminated 10,12-pentacosadiynoic acid (PCDA) monomer (PCDA-NH(2)) and used this derivatized monomer to prepare PCDA liposomes. PCDA-NH(2) liposomes were immobilized on an aldehyde-functionalized glass surface followed by photopolymerization by using a 254?nm light source. To measure the biotin-streptavidin binding, we conjugated photoactivatable biotin to immobilized PCDA-NH(2) liposomes by UV irradiation (365?nm) and subsequently allowed them to interact with streptavidin. We analyzed the fluorescence using a fluorescence scanner and observed single liposomes using NSOM. The average height and NSOM signal observed in a single liposome after binding were ~31.3 to 8.5 ± 0.5?nm and 0.37 to 0.16 ± 0.6?kHz, respectively. This approach, which has the advantage of not requiring a fluorescent label, could prove highly beneficial for single molecule detection technology.  相似文献   

18.
The current scanning near-field optical microscopy has been developed with optical-fiber probes obtained by use of either laser-heated pulling or chemical etching. For high-resolution near-field imaging, the detected signal is rapidly attenuated as the aperture size of the probe decreases. It is thus important to fabricate probes optimized for both spot size and optical transmission. We present a two-step fabrication that allowed us to achieve an improved performance of the optical-fiber probes. Initially, a CO(2) laser-heated pulling was used to produce a parabolic transitional taper ending with a top thin filament. Then, a rapid chemical etching with 50% buffered hydrofluoric acid was used to remove the thin filament and to result in a final conical tip on the top of the parabolic transitional taper. Systematically, we obtained optical-fiber nanoprobes with the apex size as small as 10 nm and the final cone angle varying from 15 degrees to 80 degrees . It was found that the optical transmission efficiency increases rapidly as the taper angle increases from 15 degrees to 50 degrees , but a further increase in the taper angle gives rise to important broadening of the spot size. Finally, the fabricated nanoprobes were used in photon-scanning tunneling microscopy, which allowed observation of etched double lines and grating structures with periods as small as 200 nm.  相似文献   

19.
A new boundary integral equation method for solving the near field in three-dimensional vector form in scanning near-field optical microscopy (SNOM) using Borgnis potentials as auxiliary functions is presented. A boundary integral equation of the electromagnetic fields, expressed by Borgnis potentials, is derived based on Green's theorem. The harmonic expansion in rotationally symmetric SNOM probe--sample systems is studied, and the three-dimensional electromagnetic problem is partly simplified into a two-dimensional one. The boundary conditions of Borgnis potentials both on dielectric boundaries and on perfectly conducting boundaries are derived. Relevant algorithms were studied, and a computer program was written. As an example, a SNOM probe-sample system composed of a round metal-covered probe and a sample with a flat surface has been numerically studied, and the computational results are given. This new method can be used efficiently for other electromagnetic field problems with round subwavelength structures.  相似文献   

20.
We present high-resolution images with near-field scanning optical microscopy to study phase separation in polymer films of poly(styrene) and poly(3-octyl-thiophene). Transmission and transmitted fluorescence near-field scanning optical microscope images were taken for direct visualization of the intermediate steps of phase separation in a regime where small domain sizes prevent investigation by conventional microscopy. The interpretation of near-field data on samples with large or varying film thickness or topography are also discussed, and a method for recognizing topographically induced artifacts in a quantitative way is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号